{ "cells": [ { "cell_type": "markdown", "id": "19adb0e5", "metadata": {}, "source": [ "# Acessing model data using intake-esm" ] }, { "cell_type": "markdown", "id": "ebb99754", "metadata": {}, "source": [ "To access the CMIP6 model data and CESM-PPE data we created intake catalogs to help browse and subset the data. The catalogs are stored in shared folder `/mnt/craas1-ns9989k-geo4992/data/intake-catalogs/`" ] }, { "cell_type": "code", "execution_count": 1, "id": "6cc49382", "metadata": { "ExecuteTime": { "end_time": "2024-05-03T12:52:37.748053Z", "start_time": "2024-05-03T12:52:36.661135Z" } }, "outputs": [], "source": [ "# Importing the required packages\n", "import intake\n", "import xarray as xr\n", "import intake_esm\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "id": "d942de23", "metadata": {}, "source": [ "## Reading and browsing the catalog" ] }, { "cell_type": "code", "execution_count": 2, "id": "b5a4b54e", "metadata": { "ExecuteTime": { "end_time": "2024-05-03T12:52:40.300156Z", "start_time": "2024-05-03T12:52:37.749697Z" } }, "outputs": [ { "data": { "text/html": [ "

cmip6 catalog with 155 dataset(s) from 536945 asset(s):

\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
unique
variable_id583
table_id24
source_id75
experiment_id94
member_id190
grid_label11
time_range9100
activity_id18
institution_id35
version577
path536945
dcpp_init_year0
derived_variable_id0
\n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Open the catalog\n", "\n", "# col = intake.open_esm_datastore('https://storage.googleapis.com/cmip6/pangeo-cmip6.json') # Remote Pangeo\n", "\n", "col = intake.open_esm_datastore('/mnt/craas1-ns9989k-geo4992/data/catalogs/cmip6.json') # Local data stored on NIRD\n", "col" ] }, { "cell_type": "markdown", "id": "87ac0d3a", "metadata": {}, "source": [ "Under the hood `intake-esm` uses a large table csv, which contains some metadata and the paths of where to find it. The data can be stored both locally or in a remote cloud storage i.e `pangeo-cloud`. \n", "\n", "```{note}\n", "Since the paths listed in the csv table are absolute, notebook starting from the same catalog can be run from any directory, without needing to change the in side the notebook paths. \n", "```\n", "\n", " " ] }, { "cell_type": "markdown", "id": "2d06c631", "metadata": {}, "source": [ "### Browsing the catalog: Comparing the change in AOD over the historical period across CMIP6 models" ] }, { "cell_type": "markdown", "id": "086257e3", "metadata": {}, "source": [ "The keywords when browsing is columns of the table, e.g. `variable_id`, `source_uid` etc. To list all the keys available for a given key word you can use the `col.unique()['']` function. " ] }, { "cell_type": "code", "execution_count": 3, "id": "a7c13523", "metadata": { "ExecuteTime": { "end_time": "2024-05-03T12:52:40.378558Z", "start_time": "2024-05-03T12:52:40.301719Z" } }, "outputs": [ { "data": { "text/html": [ "

cmip6 catalog with 9 dataset(s) from 190 asset(s):

\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
unique
variable_id1
table_id1
source_id9
experiment_id1
member_id4
grid_label3
time_range185
activity_id2
institution_id9
version9
path190
dcpp_init_year0
derived_variable_id0
\n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "col = col.search(\n", " variable_id='od550aer',\n", " experiment_id='histSST'\n", ")\n", "col" ] }, { "cell_type": "markdown", "id": "02c3df7a", "metadata": {}, "source": [ "Models available for this request:" ] }, { "cell_type": "code", "execution_count": 4, "id": "efab3400", "metadata": { "ExecuteTime": { "end_time": "2024-05-03T12:52:40.397129Z", "start_time": "2024-05-03T12:52:40.380735Z" } }, "outputs": [ { "data": { "text/plain": [ "['CNRM-ESM2-1',\n", " 'MPI-ESM-1-2-HAM',\n", " 'MIROC6',\n", " 'UKESM1-0-LL',\n", " 'MRI-ESM2-0',\n", " 'GISS-E2-1-G',\n", " 'CESM2-WACCM',\n", " 'GFDL-ESM4',\n", " 'EC-Earth3-AerChem']" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "col.unique()['source_id']" ] }, { "cell_type": "markdown", "id": "46a4275a", "metadata": {}, "source": [ "## Loading the data and plotting" ] }, { "cell_type": "markdown", "id": "b551425b", "metadata": {}, "source": [ "```{warning}\n", "The catalog can be huge, always query and subset catalog before loading the data. Preferably down to level of experiment and variable.\n", "```" ] }, { "cell_type": "markdown", "id": "6ae7f5dc", "metadata": {}, "source": [ "The `.to_dataset_dict` function can accept an optional preprocessing function which can be used to harmonize the datasets, temporal resampling, or slicing.\n", "Below we made a preprocessing function for resampling the data into annual means and calculate the global average to allow for easily plotting the time series. \n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 5, "id": "314301c0", "metadata": { "ExecuteTime": { "end_time": "2024-05-03T12:52:40.401898Z", "start_time": "2024-05-03T12:52:40.398453Z" } }, "outputs": [], "source": [ "def resample_calculate_and_global_avg(ds):\n", " \"\"\"\n", " Function to resample the data to annual mean and calculate the global average.\n", " \"\"\"\n", " ds=ds.resample(time='YE').mean() # Resample to annual mean\n", " ds = ds.drop_vars(['lat_bnds','lon_bnds'], errors='ignore') # create conflict when calculating global average\n", " weights = np.cos(np.deg2rad(ds.lat)) # Make weighted global average\n", " ds_weighted = ds.weighted(weights)\n", " weighted_mean = ds_weighted.mean(dim=['lon','lat'])\n", " \n", " return weighted_mean" ] }, { "cell_type": "markdown", "id": "1c04e261", "metadata": {}, "source": [ "\n", "```{admonition} Using dask\n", ":class: dropdown\n", "The processing can be done in parallel using dask, which can speed things up a bit. \n", "The dask cluster below is constrained within the resource each user have available.\n", "The corresponding dask cluster panel can be viewed by clicking on the dask icon \"\" on the left-side panel.\n", "```python\n", "from dask.distributed import Client, LocalCluster\n", "client = Client(LocalCluster(n_workers=4, threads_per_worker=1, memory_limit='16GB'))\n", "```\n" ] }, { "cell_type": "code", "execution_count": 6, "id": "3fd710d7", "metadata": { "ExecuteTime": { "end_time": "2024-05-03T12:52:53.705645Z", "start_time": "2024-05-03T12:52:40.403088Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "--> The keys in the returned dictionary of datasets are constructed as follows:\n", "\t'activity_id.institution_id'\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " 100.00% [9/9 00:13<00:00]\n", "
\n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/opt/conda/envs/pangeo-notebook/lib/python3.11/site-packages/xarray/conventions.py:286: SerializationWarning: variable 'od550aer' has multiple fill values {1e+20, 1e+20} defined, decoding all values to NaN.\n", " var = coder.decode(var, name=name)\n" ] } ], "source": [ "# dataset_dict = col.to_dataset_dict()\n", "dataset_dict = col.to_dataset_dict(xarray_open_kwargs={'use_cftime':True, 'chunks':{'time':48}}, \n", " aggregate=True,\n", " preprocess=resample_calculate_and_global_avg,\n", " skip_on_error=True,\n", " xarray_combine_by_coords={'combine_attrs': 'override'} \n", " )\n" ] }, { "cell_type": "markdown", "id": "014fcfcd", "metadata": {}, "source": [ "Without the providing a `preprocess` function the time aggregated output as dictionary with grouped by the following keys `\"activity_id\"`, `\"institution_id\"`, `\"source_id\"`, `\"experiment_id\"`, `\"table_id\"`, `\"grid_label\"`. " ] }, { "cell_type": "code", "execution_count": 7, "id": "1b2d8bef", "metadata": { "ExecuteTime": { "end_time": "2024-05-03T12:53:00.664439Z", "start_time": "2024-05-03T12:52:53.707734Z" }, "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "--> The keys in the returned dictionary of datasets are constructed as follows:\n", "\t'activity_id.institution_id'\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " 100.00% [9/9 00:06<00:00]\n", "
\n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/opt/conda/envs/pangeo-notebook/lib/python3.11/site-packages/xarray/conventions.py:286: SerializationWarning: variable 'od550aer' has multiple fill values {1e+20, 1e+20} defined, decoding all values to NaN.\n", " var = coder.decode(var, name=name)\n" ] }, { "data": { "text/plain": [ "{'AerChemMIP.CNRM-CERFACS': Size: 260MB\n", " Dimensions: (lat: 128, lon: 256, time: 1980, axis_nbounds: 2, member_id: 1)\n", " Coordinates:\n", " * lat (lat) float64 1kB -88.93 -87.54 -86.14 ... 86.14 87.54 88.93\n", " * lon (lon) float64 2kB 0.0 1.406 2.812 4.219 ... 355.8 357.2 358.6\n", " * time (time) object 16kB 1850-01-16 12:00:00 ... 2014-12-16 12:00:00\n", " * member_id (member_id) object 8B 'r1i1p1f2'\n", " Dimensions without coordinates: axis_nbounds\n", " Data variables:\n", " time_bounds (time, axis_nbounds) object 32kB dask.array\n", " od550aer (member_id, time, lat, lon) float32 260MB dask.array\n", " Attributes: (12/65)\n", " Conventions: CF-1.7 CMIP-6.2\n", " creation_date: 2018-08-08T14:22:32Z\n", " description: Historical transient with SSTs prescrib...\n", " title: CNRM-ESM2-1 model output prepared for C...\n", " activity_id: AerChemMIP\n", " contact: contact.cmip@meteo.fr\n", " ... ...\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: CNRM-CERFACS\n", " intake_esm_attrs:version: v20190621\n", " intake_esm_attrs:path: /mnt/craas1-ns9989k-ns9560k/ESGF/CMIP6/...\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.CNRM-CERFACS,\n", " 'AerChemMIP.NOAA-GFDL': Size: 411MB\n", " Dimensions: (bnds: 2, lat: 180, lon: 288, member_id: 1, time: 1980)\n", " Coordinates:\n", " * bnds (bnds) float64 16B 1.0 2.0\n", " * lat (lat) float64 1kB -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", " lat_bnds (lat, bnds) float64 3kB dask.array\n", " * lon (lon) float64 2kB 0.625 1.875 3.125 4.375 ... 356.9 358.1 359.4\n", " lon_bnds (lon, bnds) float64 5kB dask.array\n", " * time (time) object 16kB 1850-01-16 12:00:00 ... 2014-12-16 12:00:00\n", " time_bnds (time, bnds) object 32kB dask.array\n", " * member_id (member_id) object 8B 'r1i1p1f1'\n", " Data variables:\n", " od550aer (member_id, time, lat, lon) float32 411MB dask.array\n", " Attributes: (12/56)\n", " external_variables: areacella\n", " history: File was processed by fremetar (GFDL an...\n", " table_id: AERmon\n", " activity_id: AerChemMIP\n", " branch_method: atmospheric and land state taken from p...\n", " branch_time_in_child: 0.0\n", " ... ...\n", " intake_esm_attrs:grid_label: gr1\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: NOAA-GFDL\n", " intake_esm_attrs:version: v20180701\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.NOAA-GFDL,\n", " 'AerChemMIP.NCAR': Size: 438MB\n", " Dimensions: (member_id: 1, time: 1980, lat: 192, lon: 288, nbnd: 2)\n", " Coordinates:\n", " * lat (lat) float64 2kB -90.0 -89.06 -88.12 -87.17 ... 88.12 89.06 90.0\n", " * lon (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8\n", " * time (time) object 16kB 1850-01-15 12:00:00 ... 2014-12-15 12:00:00\n", " time_bnds (time, nbnd) object 32kB dask.array\n", " lat_bnds (lat, nbnd) float32 2kB dask.array\n", " lon_bnds (lon, nbnd) float32 2kB dask.array\n", " * member_id (member_id) object 8B 'r1i2p1f1'\n", " Dimensions without coordinates: nbnd\n", " Data variables:\n", " od550aer (member_id, time, lat, lon) float32 438MB dask.array\n", " Attributes: (12/56)\n", " Conventions: CF-1.7 CMIP-6.2\n", " activity_id: AerChemMIP\n", " branch_method: no parent\n", " branch_time_in_child: 674885.0\n", " branch_time_in_parent: 0.0\n", " case_id: 47\n", " ... ...\n", " intake_esm_attrs:grid_label: gn\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: NCAR\n", " intake_esm_attrs:version: v20190531\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.NCAR,\n", " 'AerChemMIP.NASA-GISS': Size: 103MB\n", " Dimensions: (time: 1980, bnds: 2, lat: 90, lon: 144, member_id: 1)\n", " Coordinates:\n", " * time (time) object 16kB 1850-01-16 12:00:00 ... 2014-12-16 12:00:00\n", " time_bnds (time, bnds) object 32kB dask.array\n", " * lat (lat) float64 720B -89.0 -87.0 -85.0 -83.0 ... 85.0 87.0 89.0\n", " lat_bnds (lat, bnds) float64 1kB dask.array\n", " * lon (lon) float64 1kB 1.25 3.75 6.25 8.75 ... 351.2 353.8 356.2 358.8\n", " lon_bnds (lon, bnds) float64 2kB dask.array\n", " * member_id (member_id) object 8B 'r1i1p3f1'\n", " Dimensions without coordinates: bnds\n", " Data variables:\n", " od550aer (member_id, time, lat, lon) float32 103MB dask.array\n", " Attributes: (12/56)\n", " Conventions: CF-1.7 CMIP-6.2\n", " activity_id: AerChemMIP\n", " branch_method: standard\n", " branch_time_in_child: 0.0\n", " branch_time_in_parent: 0.0\n", " contact: Kenneth Lo (cdkkl@giss.nasa.gov)\n", " ... ...\n", " intake_esm_attrs:grid_label: gn\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: NASA-GISS\n", " intake_esm_attrs:version: v20191120\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.NASA-GISS,\n", " 'AerChemMIP.MIROC': Size: 260MB\n", " Dimensions: (time: 1980, bnds: 2, lat: 128, lon: 256, member_id: 1)\n", " Coordinates:\n", " * time (time) object 16kB 1850-01-16 12:00:00 ... 2014-12-16 12:00:00\n", " time_bnds (time, bnds) object 32kB dask.array\n", " * lat (lat) float64 1kB -88.93 -87.54 -86.14 ... 86.14 87.54 88.93\n", " lat_bnds (lat, bnds) float64 2kB dask.array\n", " * lon (lon) float64 2kB 0.0 1.406 2.812 4.219 ... 355.8 357.2 358.6\n", " lon_bnds (lon, bnds) float64 4kB dask.array\n", " wavelength float64 8B 550.0\n", " * member_id (member_id) object 8B 'r1i1p1f1'\n", " Dimensions without coordinates: bnds\n", " Data variables:\n", " od550aer (member_id, time, lat, lon) float32 260MB dask.array\n", " Attributes: (12/53)\n", " Conventions: CF-1.7 CMIP-6.2\n", " activity_id: AerChemMIP\n", " branch_method: standard\n", " branch_time_in_child: 0.0\n", " branch_time_in_parent: 0.0\n", " data_specs_version: 01.00.31\n", " ... ...\n", " intake_esm_attrs:grid_label: gn\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: MIROC\n", " intake_esm_attrs:version: v20190828\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.MIROC,\n", " 'AerChemMIP.MOHC': Size: 219MB\n", " Dimensions: (time: 1980, bnds: 2, lat: 144, lon: 192, member_id: 1)\n", " Coordinates:\n", " * time (time) object 16kB 1850-01-16 00:00:00 ... 2014-12-16 00:00:00\n", " time_bnds (time, bnds) object 32kB dask.array\n", " * lat (lat) float64 1kB -89.38 -88.12 -86.88 ... 86.88 88.12 89.38\n", " lat_bnds (lat, bnds) float64 2kB dask.array\n", " * lon (lon) float64 2kB 0.9375 2.812 4.688 6.562 ... 355.3 357.2 359.1\n", " lon_bnds (lon, bnds) float64 3kB dask.array\n", " wavelength float64 8B 550.0\n", " * member_id (member_id) object 8B 'r1i1p1f2'\n", " Dimensions without coordinates: bnds\n", " Data variables:\n", " od550aer (member_id, time, lat, lon) float32 219MB dask.array\n", " Attributes: (12/56)\n", " Conventions: CF-1.7 CMIP-6.2\n", " activity_id: AerChemMIP\n", " branch_time_in_child: 0.0\n", " data_specs_version: 01.00.29\n", " experiment: historical prescribed SSTs and historic...\n", " experiment_id: histSST\n", " ... ...\n", " intake_esm_attrs:grid_label: gn\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: MOHC\n", " intake_esm_attrs:version: v20190902\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.MOHC,\n", " 'AerChemMIP.MRI': Size: 406MB\n", " Dimensions: (time: 1980, bnds: 2, lat: 160, lon: 320, member_id: 1)\n", " Coordinates:\n", " * time (time) object 16kB 1850-01-16 12:00:00 ... 2014-12-16 12:00:00\n", " * lat (lat) float64 1kB -89.14 -88.03 -86.91 ... 86.91 88.03 89.14\n", " * lon (lon) float64 3kB 0.0 1.125 2.25 3.375 ... 356.6 357.8 358.9\n", " wavelength float64 8B ...\n", " * member_id (member_id) object 8B 'r1i1p1f1'\n", " Dimensions without coordinates: bnds\n", " Data variables:\n", " time_bnds (time, bnds) object 32kB dask.array\n", " lat_bnds (lat, bnds) float64 3kB dask.array\n", " lon_bnds (lon, bnds) float64 5kB dask.array\n", " od550aer (member_id, time, lat, lon) float32 406MB dask.array\n", " Attributes: (12/59)\n", " Conventions: CF-1.7 CMIP-6.2\n", " activity_id: AerChemMIP\n", " branch_method: standard (the actual parent run: RFMIP ...\n", " branch_time_in_child: 0.0\n", " branch_time_in_parent: 0.0\n", " comment: This od550aer includes AOD from stratos...\n", " ... ...\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: MRI\n", " intake_esm_attrs:version: v20200207\n", " intake_esm_attrs:path: /mnt/craas1-ns9989k-ns9560k/ESGF/CMIP6/...\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.MRI,\n", " 'AerChemMIP.HAMMOZ-Consortium': Size: 146MB\n", " Dimensions: (time: 1980, bnds: 2, lat: 96, lon: 192, member_id: 1)\n", " Coordinates:\n", " * time (time) object 16kB 1850-01-16 12:00:00 ... 2014-12-16 12:00:00\n", " time_bnds (time, bnds) object 32kB dask.array\n", " * lat (lat) float64 768B -88.57 -86.72 -84.86 ... 84.86 86.72 88.57\n", " lat_bnds (lat, bnds) float64 2kB dask.array\n", " * lon (lon) float64 2kB 0.0 1.875 3.75 5.625 ... 354.4 356.2 358.1\n", " lon_bnds (lon, bnds) float64 3kB dask.array\n", " wavelength float64 8B 550.0\n", " * member_id (member_id) object 8B 'r1i1p1f1'\n", " Dimensions without coordinates: bnds\n", " Data variables:\n", " od550aer (member_id, time, lat, lon) float32 146MB dask.array\n", " Attributes: (12/57)\n", " CDO: Climate Data Operators version 1.9.9rc8...\n", " Conventions: CF-1.7 CMIP-6.2\n", " activity_id: AerChemMIP\n", " branch_method: standard\n", " branch_time_in_child: 0.0\n", " branch_time_in_parent: 0.0\n", " ... ...\n", " intake_esm_attrs:grid_label: gn\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: HAMMOZ-Consortium\n", " intake_esm_attrs:version: v20190628\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.HAMMOZ-Consortium,\n", " 'CMIP.EC-Earth-Consortium': Size: 86MB\n", " Dimensions: (time: 1980, bnds: 2, lat: 90, lon: 120, member_id: 1)\n", " Coordinates:\n", " * time (time) object 16kB 1850-01-16 12:00:00 ... 2014-12-16 12:00:00\n", " time_bnds (time, bnds) object 32kB dask.array\n", " * lat (lat) float64 720B -89.0 -87.0 -85.0 -83.0 ... 85.0 87.0 89.0\n", " lat_bnds (lat, bnds) float64 1kB dask.array\n", " * lon (lon) float64 960B 1.5 4.5 7.5 10.5 ... 349.5 352.5 355.5 358.5\n", " lon_bnds (lon, bnds) float64 2kB dask.array\n", " wavelength float64 8B 550.0\n", " * member_id (member_id) object 8B 'r1i1p1f1'\n", " Dimensions without coordinates: bnds\n", " Data variables:\n", " od550aer (member_id, time, lat, lon) float32 86MB dask.array\n", " Attributes: (12/57)\n", " Conventions: CF-1.7 CMIP-6.2\n", " activity_id: AerChemMIP\n", " branch_method: standard\n", " branch_time_in_child: 0.0\n", " branch_time_in_parent: 0.0\n", " contact: cmip6-data@ec-earth.org\n", " ... ...\n", " intake_esm_attrs:grid_label: gn\n", " intake_esm_attrs:activity_id: CMIP\n", " intake_esm_attrs:institution_id: EC-Earth-Consortium\n", " intake_esm_attrs:version: v20210309\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: CMIP.EC-Earth-Consortium}" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "col.to_dataset_dict(xarray_open_kwargs={'use_cftime':True, 'chunks':{'time':48}}, \n", " aggregate=True,\n", " skip_on_error=True,\n", " xarray_combine_by_coords={'combine_attrs': 'override'} \n", " )" ] }, { "cell_type": "markdown", "id": "92cbf62a", "metadata": {}, "source": [ "Preprocess dictionary only contain the time series, which is easy to loop over and plot for each model. " ] }, { "cell_type": "code", "execution_count": 8, "id": "5da56331", "metadata": { "ExecuteTime": { "end_time": "2024-05-03T12:53:00.676386Z", "start_time": "2024-05-03T12:53:00.666493Z" } }, "outputs": [ { "data": { "text/plain": [ "{'AerChemMIP.NASA-GISS': Size: 3kB\n", " Dimensions: (time: 165, member_id: 1)\n", " Coordinates:\n", " * time (time) object 1kB 1850-12-31 00:00:00 ... 2014-12-31 00:00:00\n", " * member_id (member_id) object 8B 'r1i1p3f1'\n", " Data variables:\n", " od550aer (member_id, time) float64 1kB dask.array\n", " Attributes:\n", " intake_esm_vars: ['od550aer']\n", " intake_esm_attrs:variable_id: od550aer\n", " intake_esm_attrs:table_id: AERmon\n", " intake_esm_attrs:source_id: GISS-E2-1-G\n", " intake_esm_attrs:experiment_id: histSST\n", " intake_esm_attrs:member_id: r1i1p3f1\n", " intake_esm_attrs:grid_label: gn\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: NASA-GISS\n", " intake_esm_attrs:version: v20191120\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.NASA-GISS,\n", " 'AerChemMIP.CNRM-CERFACS': Size: 3kB\n", " Dimensions: (time: 165, member_id: 1)\n", " Coordinates:\n", " * time (time) object 1kB 1850-12-31 00:00:00 ... 2014-12-31 00:00:00\n", " * member_id (member_id) object 8B 'r1i1p1f2'\n", " Data variables:\n", " od550aer (member_id, time) float64 1kB dask.array\n", " Attributes: (12/14)\n", " intake_esm_vars: ['od550aer']\n", " intake_esm_attrs:variable_id: od550aer\n", " intake_esm_attrs:table_id: AERmon\n", " intake_esm_attrs:source_id: CNRM-ESM2-1\n", " intake_esm_attrs:experiment_id: histSST\n", " intake_esm_attrs:member_id: r1i1p1f2\n", " ... ...\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: CNRM-CERFACS\n", " intake_esm_attrs:version: v20190621\n", " intake_esm_attrs:path: /mnt/craas1-ns9989k-ns9560k/ESGF/CMIP6/...\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.CNRM-CERFACS,\n", " 'AerChemMIP.NCAR': Size: 3kB\n", " Dimensions: (time: 165, member_id: 1)\n", " Coordinates:\n", " * time (time) object 1kB 1850-12-31 00:00:00 ... 2014-12-31 00:00:00\n", " * member_id (member_id) object 8B 'r1i2p1f1'\n", " Data variables:\n", " od550aer (member_id, time) float64 1kB dask.array\n", " Attributes:\n", " intake_esm_vars: ['od550aer']\n", " intake_esm_attrs:variable_id: od550aer\n", " intake_esm_attrs:table_id: AERmon\n", " intake_esm_attrs:source_id: CESM2-WACCM\n", " intake_esm_attrs:experiment_id: histSST\n", " intake_esm_attrs:member_id: r1i2p1f1\n", " intake_esm_attrs:grid_label: gn\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: NCAR\n", " intake_esm_attrs:version: v20190531\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.NCAR,\n", " 'AerChemMIP.NOAA-GFDL': Size: 3kB\n", " Dimensions: (time: 165, member_id: 1)\n", " Coordinates:\n", " * time (time) object 1kB 1850-12-31 00:00:00 ... 2014-12-31 00:00:00\n", " * member_id (member_id) object 8B 'r1i1p1f1'\n", " Data variables:\n", " od550aer (member_id, time) float64 1kB dask.array\n", " Attributes:\n", " intake_esm_vars: ['od550aer']\n", " intake_esm_attrs:variable_id: od550aer\n", " intake_esm_attrs:table_id: AERmon\n", " intake_esm_attrs:source_id: GFDL-ESM4\n", " intake_esm_attrs:experiment_id: histSST\n", " intake_esm_attrs:member_id: r1i1p1f1\n", " intake_esm_attrs:grid_label: gr1\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: NOAA-GFDL\n", " intake_esm_attrs:version: v20180701\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.NOAA-GFDL,\n", " 'AerChemMIP.MIROC': Size: 3kB\n", " Dimensions: (time: 165, member_id: 1)\n", " Coordinates:\n", " wavelength float64 8B 550.0\n", " * time (time) object 1kB 1850-12-31 00:00:00 ... 2014-12-31 00:00:00\n", " * member_id (member_id) object 8B 'r1i1p1f1'\n", " Data variables:\n", " od550aer (member_id, time) float64 1kB dask.array\n", " Attributes:\n", " intake_esm_vars: ['od550aer']\n", " intake_esm_attrs:variable_id: od550aer\n", " intake_esm_attrs:table_id: AERmon\n", " intake_esm_attrs:source_id: MIROC6\n", " intake_esm_attrs:experiment_id: histSST\n", " intake_esm_attrs:member_id: r1i1p1f1\n", " intake_esm_attrs:grid_label: gn\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: MIROC\n", " intake_esm_attrs:version: v20190828\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.MIROC,\n", " 'AerChemMIP.MOHC': Size: 3kB\n", " Dimensions: (time: 165, member_id: 1)\n", " Coordinates:\n", " wavelength float64 8B 550.0\n", " * time (time) object 1kB 1850-12-30 00:00:00 ... 2014-12-30 00:00:00\n", " * member_id (member_id) object 8B 'r1i1p1f2'\n", " Data variables:\n", " od550aer (member_id, time) float64 1kB dask.array\n", " Attributes:\n", " intake_esm_vars: ['od550aer']\n", " intake_esm_attrs:variable_id: od550aer\n", " intake_esm_attrs:table_id: AERmon\n", " intake_esm_attrs:source_id: UKESM1-0-LL\n", " intake_esm_attrs:experiment_id: histSST\n", " intake_esm_attrs:member_id: r1i1p1f2\n", " intake_esm_attrs:grid_label: gn\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: MOHC\n", " intake_esm_attrs:version: v20190902\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.MOHC,\n", " 'AerChemMIP.HAMMOZ-Consortium': Size: 3kB\n", " Dimensions: (time: 165, member_id: 1)\n", " Coordinates:\n", " wavelength float64 8B 550.0\n", " * time (time) object 1kB 1850-12-31 00:00:00 ... 2014-12-31 00:00:00\n", " * member_id (member_id) object 8B 'r1i1p1f1'\n", " Data variables:\n", " od550aer (member_id, time) float64 1kB dask.array\n", " Attributes:\n", " intake_esm_vars: ['od550aer']\n", " intake_esm_attrs:variable_id: od550aer\n", " intake_esm_attrs:table_id: AERmon\n", " intake_esm_attrs:source_id: MPI-ESM-1-2-HAM\n", " intake_esm_attrs:experiment_id: histSST\n", " intake_esm_attrs:member_id: r1i1p1f1\n", " intake_esm_attrs:grid_label: gn\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: HAMMOZ-Consortium\n", " intake_esm_attrs:version: v20190628\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.HAMMOZ-Consortium,\n", " 'AerChemMIP.MRI': Size: 3kB\n", " Dimensions: (time: 165, member_id: 1)\n", " Coordinates:\n", " wavelength float64 8B 550.0\n", " * time (time) object 1kB 1850-12-31 00:00:00 ... 2014-12-31 00:00:00\n", " * member_id (member_id) object 8B 'r1i1p1f1'\n", " Data variables:\n", " od550aer (member_id, time) float64 1kB dask.array\n", " Attributes: (12/14)\n", " intake_esm_vars: ['od550aer']\n", " intake_esm_attrs:variable_id: od550aer\n", " intake_esm_attrs:table_id: AERmon\n", " intake_esm_attrs:source_id: MRI-ESM2-0\n", " intake_esm_attrs:experiment_id: histSST\n", " intake_esm_attrs:member_id: r1i1p1f1\n", " ... ...\n", " intake_esm_attrs:activity_id: AerChemMIP\n", " intake_esm_attrs:institution_id: MRI\n", " intake_esm_attrs:version: v20200207\n", " intake_esm_attrs:path: /mnt/craas1-ns9989k-ns9560k/ESGF/CMIP6/...\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: AerChemMIP.MRI,\n", " 'CMIP.EC-Earth-Consortium': Size: 3kB\n", " Dimensions: (time: 165, member_id: 1)\n", " Coordinates:\n", " wavelength float64 8B 550.0\n", " * time (time) object 1kB 1850-12-31 00:00:00 ... 2014-12-31 00:00:00\n", " * member_id (member_id) object 8B 'r1i1p1f1'\n", " Data variables:\n", " od550aer (member_id, time) float64 1kB dask.array\n", " Attributes:\n", " intake_esm_vars: ['od550aer']\n", " intake_esm_attrs:variable_id: od550aer\n", " intake_esm_attrs:table_id: AERmon\n", " intake_esm_attrs:source_id: EC-Earth3-AerChem\n", " intake_esm_attrs:experiment_id: histSST\n", " intake_esm_attrs:member_id: r1i1p1f1\n", " intake_esm_attrs:grid_label: gn\n", " intake_esm_attrs:activity_id: CMIP\n", " intake_esm_attrs:institution_id: EC-Earth-Consortium\n", " intake_esm_attrs:version: v20210309\n", " intake_esm_attrs:_data_format_: netcdf\n", " intake_esm_dataset_key: CMIP.EC-Earth-Consortium}" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset_dict" ] }, { "cell_type": "code", "execution_count": 9, "id": "2bf4c27a", "metadata": { "ExecuteTime": { "end_time": "2024-05-03T12:54:52.226978Z", "start_time": "2024-05-03T12:53:00.677955Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIhCAYAAACizkCYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yN1x/A8c/N3okMEmSHmCE2QaK1lVqtVXvWVhT1KymlqtRozbZC1a7RUqVGYm+iKlaIUUmskMge9/n9kebWdTMJob7v1+u+2vs85znnPE+GfO8553tUiqIoCCGEEEIIIYR4LnpF3QEhhBBCCCGE+C+Q4EoIIYQQQgghCoEEV0IIIYQQQghRCCS4EkIIIYQQQohCIMGVEEIIIYQQQhQCCa6EEEIIIYQQohBIcCWEEEIIIYQQhUCCKyGEEEIIIYQoBBJcCSGEEEIIIUQhkOBKCPHGWb58OSqViuvXrxd1VwA4fPgwgYGBPHr0SOecm5sb77zzzsvvVDYCAgJQqVQ6r+bNm2uVu379erblVCoVa9eu1an32rVrtG/fHhsbGywsLGjSpAmnT5/Od79Onz5N48aNsbCwwMbGhvbt23Pt2rXnvt/Xwav0/QHQq1cv3Nzc8lVWpVIRGBj4QvtTEHPnzqV9+/a4u7ujUqkICAjItlxgYCAqlUrr2MGDB+nXrx/Vq1fH2Ni4UH6//P3334wcORJ/f39sbGxQqVQsX74827IxMTF07tyZ4sWLo1KpaNu2LQA//vgjnTt3xtvbGz09vXx/bYQQz86gqDsghBBvusOHD/PZZ5/Rq1cvbGxsiro7ufLw8GDVqlVax3Lq87Bhw+jatavWsTJlymi9v3fvHg0aNKBYsWIsW7YMExMTvvjiCwICAjhx4gTe3t659ufixYsEBARQtWpV1q9fT3JyMpMmTaJBgwaEhobi4OBQ8JsUz+zTTz9lxIgRRd2NZ7J48WLMzc1566232Lp1a47l+vXrp/OBwp49e9i9eze+vr5YWVkREhLy3P0JDw9n1apVVK1alZYtW7JmzZocy06dOpXNmzezbNkyPD09sbW1BWDlypVER0dTq1Yt1Go1aWlpz90vIUTuJLgSQgiRb6amptSpUydfZV1cXPIs+9VXX3Hv3j0OHz6Mq6srAPXr18fT05NJkyaxbt26XK+fNGkSxsbGbNu2DSsrKwCqV69OmTJlmDVrFl9++WW++ipypigKycnJmJqa5lnW09PzJfSo8GRkZJCeno6xsTFhYWHo6WVO6KlUqVKO15QuXZrSpUtrHfv000+ZPHkyALNmzSqU4Kphw4bcu3cPgJMnT+YaXP311194enrSrVs3reM7d+7U3NM777zDX3/99dz9EkLkTqYFCiGey/nz51GpVGzYsEFz7NSpU6hUKipWrKhVtk2bNlSvXl3zft26dTRt2hQnJydMTU0pX74848ePJyEhQVNm7ty5qFQqwsPDddoeN24cRkZG3L9/X3Ns9+7dvP3221hZWWFmZoafnx979uzJ173k59qsKUHnz5+nS5cuWFtbU6JECfr06UNsbKxW2UePHtG3b19sbW2xsLCgVatWXLt2TWs6VGBgIGPHjgXQTEdSqVQ6f5zt2LGDatWqYWpqSrly5Vi2bFm+7ulVt3nzZt566y1NYAVgZWVF+/bt2bp1K+np6Tlem56ezrZt2+jQoYMmsAJwdXWlUaNGbN68+Zn61KtXLywsLLh48SLNmjXD3NwcJycnZsyYAcDRo0epX78+5ubmlC1blhUrVujUER0dzcCBAyldujRGRka4u7vz2Wefad1P1vTJr776ii+//BI3NzdMTU0JCAjg8uXLpKWlMX78eEqWLIm1tTXt2rXj7t272fZ58+bN+Pj4YGJigoeHB/Pnz9cpExcXx5gxY3B3d8fIyIhSpUoxcuRIrZ83yJyuN3ToUBYvXkz58uUxNjbO9h5zenZPTz2Li4ujf//+2NnZYWFhQfPmzbl8+XK+6itMWc975syZfP7557i7u2NsbExwcDCAJgjJS3bTAvN7bUhICCqVip9++omPPvoIR0dHTE1N8ff358yZMwWuM+uedu/ezYULF3R+f+S3X0KIwiM/dUKI51KxYkWcnJzYvXu35tju3bsxNTUlLCyMyMhIIPMP4X379tG4cWNNuStXrtCyZUt++OEHduzYwciRI1m/fj2tW7fWlPnggw8wMjLSWWuQkZHBTz/9ROvWrbG3twfgp59+omnTplhZWbFixQrWr1+Pra0tzZo1yzPAKui1HTp0oGzZsmzcuJHx48ezevVqRo0apTmvVqtp3bo1q1evZty4cWzevJnatWvrTCfq168fw4YNA2DTpk0cOXKEI0eOUK1aNU2Zs2fPMnr0aEaNGsUvv/yCj48Pffv2Zf/+/bneU9ZzSk9Pz/OlVqvzrAvg6tWr2NraYmBggKenJxMnTiQpKSnbsjNmzMDIyAgzMzPq16/Pr7/+qnU+KSmJq1ev4uPjo3Otj48PSUlJua6dunr1KklJSTleHx4eTnJycr7u62lpaWm0b9+eVq1a8csvv9CiRQsmTJjAJ598Qs+ePenTpw+bN2/G29ubXr16cerUKc21WdOwdu7cyaRJk/j999/p27cvX3zxBf3799dpa8GCBRw6dIgFCxbw/fffc/HiRVq3bk3fvn25d+8ey5YtY+bMmezevZt+/frpXB8aGsrIkSMZNWoUmzdvpl69eowYMYJZs2ZpyiQmJuLv78+KFSsYPnw4v//+O+PGjWP58uW0adMGRVG06tyyZQuLFi1i0qRJ7Ny5kwYNGjzTc1QUhbZt27Jy5UpGjx7N5s2bqVOnDi1atMh3Hfn5/k1PT9e5h5zMnz+fvXv3MmvWLH7//XfKlSv3TPf2PD755BOuXbvG999/z/fff09kZCQBAQEFXivo5OTEkSNH8PX1xcPDI9vfH0KIl0wRQojn9MEHHygeHh6a940bN1b69++vFCtWTFmxYoWiKIpy6NAhBVD++OOPbOtQq9VKWlqasm/fPgVQzp49qznXvn17pXTp0kpGRobm2Pbt2xVA2bp1q6IoipKQkKDY2toqrVu31qo3IyNDqVKlilKrVi3NsaCgIAVQIiIiCnzt5MmTFUCZOXOmVtnBgwcrJiYmilqtVhRFUX777TcFUBYtWqRV7osvvlAAZfLkyZpjX331lVZ/nuTq6qqYmJgoN27c0BxLSkpSbG1tlYEDB+qUz+56IM/Xk/3JycSJE5WFCxcqe/fuVX777Tdl6NChioGBgdKwYUOtr01kZKTSv39/Zf369cqBAweUVatWKXXq1FEA5bvvvtOUu337tgIoX3zxhU5bq1evVgDl8OHDOfYn63tqzZo1OuemT5+uAEpkZGSe9/W0nj17KoCyceNGzbG0tDTFwcFBAZTTp09rjj948EDR19dXPvroI82xgQMHKhYWFlpfM0VRlFmzZimAcv78eUVRFCUiIkIBlCpVqmg9v7lz5yqA0qZNG63rR44cqQBKbGys5pirq6uiUqmU0NBQrbJNmjRRrKyslISEBEVRMr/v9PT0lBMnTmiV+/nnnxVA2b59u+YYoFhbWysxMTH5e2BP6Nmzp+Lq6qp5//vvvyuAMm/ePK1y06ZNy/f3XX6+fwElKCgo13qynrenp6eSmpqaa9mKFSsq/v7+2Z7L+h2Qk9x+noODgxVAqVatmuZ3haIoyvXr1xVDQ0OlX79+2dZ54sSJXO/R399fqVixYo59UhRFadWqldbXRgjxYsiaKyHEc3v77bf56aefiIiIwMnJiYMHD/Lhhx/y4MEDdu3aRY8ePdi9ezfGxsbUr19fc921a9f43//+x969e7l7967WJ88XLlzQjEj07t2bTZs2sXv3bpo2bQpAUFAQjo6Omk/ADx8+TExMDD179tSZSta8eXNmzpxJQkIC5ubmOv1/lmvbtGmjVc7Hx4fk5GTu3r1LiRIl2LdvHwDvv/++VrkuXbowYcKE/D3Yf1StWhUXFxfNexMTE8qWLcuNGzfyvHbr1q2kpKTkWa5kyZJ5lvn888+13rds2RI3NzfGjBnDL7/8Qrt27YDMT9OXLl2qVfa9996jdu3ajB8/nl69emFg8O8/P09PsXpSbucK6/qcrmvZsqXmvYGBAV5eXhgYGODr66s5bmtrS/HixbW+Ftu2baNRo0aULFlS6/upRYsWjBkzhn379lGhQgXN8ZYtW2pN3ypfvjwArVq10upT1vGbN29qrQmqWLEiVapU0SrbtWtXdu3axenTp6lfvz7btm2jUqVKVK1aVatPzZo100wje3I06a233qJYsWL5fFo5y5py9/RaoK5duzJx4sR81XHixIl8lXN3d89XuTZt2mBoaJivsi9K165dtb43XV1dqVevnuZ5CSFeXxJcCSGeW9ZUv927d+Pu7k5aWhpvvfUWd+7cYerUqZpzfn5+mkXx8fHxNGjQABMTEz7//HPKli2LmZkZt27don379lpTzVq0aIGTkxNBQUE0bdqUhw8f8uuvvzJixAj09fUBuHPnDgAdO3bMsZ8xMTHZBlfPcq2dnZ3WeWNjYwBNvx88eICBgYEma1eWEiVK5NhGTp5uK6u9nKbjPalChQr5mi71rGszPvjgA8aMGcPRo0c1wVV2DA0N6dSpE+PHj+fKlSuUL1+eYsWKoVKpePDggU75mJgYAJ3n96Ss55LT9SqV6pmzL5qZmWFiYqJ1zMjIKNv+GBkZaU0/vHPnDlu3bs3xD/gn1wiC7j0aGRnlevzpqY6Ojo46bWQdy3o2d+7cITw8PN99cnJyyrZcQWX9HDz9PZxdn3NStWrVfJXL+l2Ql8K6t+eR09fs7NmzRdAbIURhkuBKCPHcSpcuTdmyZdm9ezdubm7UqFEDGxsb3n77bQYPHsyxY8c4evQon332meaavXv3EhkZSUhICP7+/prj2e31pK+vT/fu3Zk/fz6PHj1i9erVpKSk0Lt3b02ZrHVX33zzTY4Z6nIKbJ7n2pzY2dmRnp5OTEyM1h/J0dHRBarneXl6euZrhGvy5MnPtedQfoKzrCAvq6ypqSleXl6cO3dOp+y5c+cwNTXFw8Mjx/o8PT0xNTXN8XovLy+dAOllsLe3x8fHh2nTpmV7Pj+jhAWR3fdU1rGsoMbe3h5TU9McE6Fk/QxkedYRv6dl/Rw8ePBAK8AqyM9BfkeZgoKC6NWrV57lCuvenkdOX7PsPkgRQrxeJLgSQhSKxo0bs379epydnTXTmcqWLYuLiwuTJk0iLS1NK5lF1h84WSM+WZYsWZJt/b1792bmzJmsWbOG5cuXU7duXa2F6H5+ftjY2BAWFsbQoUML1PfnuTYn/v7+zJw5k3Xr1vHhhx9qjme3ie7To16FqTCnBWYnK4tcXinX09LSWLduHfb29nh5eWmOt2vXjrlz53Lr1i2cnZ0BePz4MZs2baJNmzZa0wefZmBgQOvWrdm0aRMzZ87E0tISyJw2FxwcrJVg5GV655132L59O56enoUytS4v58+f5+zZs1pTA1evXo2lpaUmscE777zD9OnTsbOzy/f0ucLQqFEjZs6cyapVqxg+fLhW//KrsKcFvgrWrFnDRx99pPk9eOPGDQ4fPkyPHj2KuGdCiOclwZUQolC8/fbbLFy4kPv37zN37lyt40FBQRQrVkwrDXu9evUoVqwYgwYNYvLkyRgaGrJq1aocp8WUK1eOunXr8sUXX3Dr1i2dNT0WFhZ888039OzZk5iYGDp27Ejx4sW5d+8eZ8+e5d69eyxatCjbup/n2pw0b94cPz8/Ro8eTVxcHNWrV+fIkSP8+OOPgPZIT+XKlQGYN28ePXv2xNDQEG9vb02w8Dyy6n5eBw4cYNq0abRr1w4PDw+Sk5P5/fffWbp0KW+99ZZWhsePPvqItLQ0/Pz8cHR05NatW3zzzTeEhoYSFBSkNX1rzJgxrFy5klatWjFlyhSMjY2ZMWMGycnJOiNpWUHZk2n5P/vsM2rWrMk777zD+PHjNZsI29vbM3r0aK3rAwIC2LdvX76zyj2rKVOmsGvXLurVq8fw4cPx9vYmOTmZ69evs337dhYvXqyzT9LzKFmyJG3atCEwMBAnJyd++ukndu3axZdffomZmRkAI0eOZOPGjTRs2JBRo0bh4+ODWq3m5s2b/PHHH4wePZratWsXWp+yNG3alIYNG/Lxxx+TkJBAjRo1OHToECtXrsx3HTVq1Cj0fmXn5MmTXL9+HchMH68oCj///DMANWvW1Nou4Gn37t3TrLPMGkn9/fffcXBwwMHBQWt0HuDu3bu0a9eO/v37Exsby+TJkzExMdFZj5nVflYWwZMnT2JhYQHkPo05S1hYGGFhYUDmyFhiYqKmzgoVKmit/RNCFJIiTachhPjPePjwoaKnp6eYm5trZeJatWqVAijt27fXuebw4cNK3bp1FTMzM8XBwUHp16+fcvr06RyzYi1dulQBFFNTU62MaU/at2+f0qpVK8XW1lYxNDRUSpUqpbRq1UrZsGGDpszT2QILcm1WprB79+5pXZtdnTExMUrv3r0VGxsbxczMTGnSpIly9OjRbLOnTZgwQSlZsqSip6enAEpwcLCiKJnZ4Fq1aqVzn/7+/jlmM3sRrly5orRs2VIpVaqUYmxsrJiYmCiVK1dWpk2bpiQnJ2uV/eGHH5RatWoptra2ioGBgVKsWDGlWbNmys6dO7OtOzw8XGnbtq1iZWWlmJmZKW+//bZy6tQpnXKurq7ZZjs7efKk8vbbbytmZmaKlZWV0rZtWyU8PFynXPXq1RVHR8c877Vnz56Kubm5zvGcMrJl9zW6d++eMnz4cMXd3V0xNDRUbG1tlerVqysTJ05U4uPjFUX5N3vdV199pXVtVka5J7/vFOXf77EnM/5ltf3zzz8rFStWVIyMjBQ3Nzfl66+/1ulnfHy88r///U/x9vZWjIyMFGtra6Vy5crKqFGjlOjoaE05QBkyZEiezyk7T2cLVBRFefTokdKnTx+tn4OLFy/mO1tgYcnpeWfJyhKZ3evJ30fZZQvM+ppl93ry5zSr3MqVK5Xhw4crDg4OirGxsdKgQQPl5MmTOn3Kqc6n28/pezOrr9m9XuazF+JNolKUF/wRnhBCCI3Vq1fTrVs3Dh06RL169Yq6O2+Mx48fY2try9y5cxkyZEhRd0e8oUJCQmjUqBEbNmzI18iTEOL1I9MChRDiBVmzZg23b9+mcuXK6OnpcfToUb766isaNmwogdVLtn//fkqVKpXtJr5CCCFEYZHgSgghXhBLS0vWrl3L559/TkJCAk5OTvTq1Utnvyjx4rVq1Upn3yiRfxkZGbmuVVOpVPlOhS6EEP9lMi1QCCGEELnKSgaSE1dXV00yCCGEeJNJcCWEEEKIXF26dInHjx/neN7Y2LjQMlMKIcTrTIIrIYQQQgghhCgEenkXEUIIIYQQQgiRF0lokQ21Wk1kZCSWlpaa3dOFEEIIIYQQbx5FUXj8+DElS5ZETy/3sSkJrrIRGRmJs7NzUXdDCCGEEEII8Yq4desWpUuXzrWMBFfZsLS0BDIfoJWVVRH3RgghhBBCCFFU4uLicHZ21sQIuZHgKhtZUwGtrKwkuBJCCCGEEELka7mQJLQQQgghhBBCiEIgwZUQQgghhBBCFAIJroQQQgghhBCiEMiaq2ekKArp6elkZGQUdVeEEC+Avr4+BgYGsh2DEEIIIfJNgqtnkJqaSlRUFImJiUXdFSHEC2RmZoaTkxNGRkZF3RUhhBBCvAYkuCogtVpNREQE+vr6lCxZEiMjI/lkW4j/GEVRSE1N5d69e0RERFCmTJk8Nw0UQgghhJDgqoBSU1NRq9U4OztjZmZW1N0RQrwgpqamGBoacuPGDVJTUzExMSnqLgkhhBDiFScfxT4j+RRbiP8++TkXQgghREHIXw5CCCGEEEIIUQgkuBJCCCGEEEKIQiDBlRCvgOvXr6NSqQgNDS2S9gMDAylRogQqlYotW7YUSR+EEEIIIV53Ely9YaKjoxkxYgReXl6YmJhQokQJ6tevz+LFi7VSy7u5uTF37lzN+zNnzvDOO+9QvHhxTExMcHNzo1OnTty/f19TZuPGjdSuXRtra2ssLS2pWLEio0ePzrU/gYGBqFQqnVe5cuUASEtLY9y4cVSuXBlzc3NKlixJjx49iIyMzPNep02bRr169TAzM8PGxqZAzyk8PJw+ffrg4uKCsbExpUqV4u2332bVqlWkp6cXqC6ApUuXEhAQgJWVFSqVikePHmmdd3Z2JioqikqVKmmOjRgxgurVq2NsbEzVqlUL3CbAwYMH8fPzw87ODlNTU8qVK8ecOXO0yly4cIHPPvuMJUuWEBUVRYsWLTh//jwdOnTAzc0NlUql9b0ghBBCCCGyJ9kC3yDXrl3Dz88PGxsbpk+fTuXKlUlPT+fy5cssW7aMkiVL0qZNG53r7t69S+PGjWndujU7d+7ExsaGiIgIfv31V01Atnv3bjp37sz06dNp06YNKpWKsLAw9uzZk2e/KlasyO7du7WOGRhkfmsmJiZy+vRpPv30U6pUqcLDhw8ZOXIkbdq04eTJk7nWm5qaynvvvUfdunX54Ycf8vuYOH78OI0bN6ZixYosWLCAcuXKER8fT1hYGIsXL6ZSpUpUqVIlX3WlpqZiZGREYmIizZs3p3nz5kyYMEGnnL6+Po6OjlrHFEWhT58+HDt2jD///DPf/X+Subk5Q4cOxcfHB3Nzcw4ePMjAgQMxNzdnwIABAFy9ehWAd999V7OtQGJiIh4eHrz33nuMGjXqmdoWQgghhHjjKEJHbGysAiixsbE655KSkpSwsDAlKSlJc0ytVisJKWlF8lKr1fm+r2bNmimlS5dW4uPjsz3/ZF2urq7KnDlzFEVRlM2bNysGBgZKWlpajnWPGDFCCQgIyHdfskyePFmpUqVKga45fvy4Aig3btzIV/mgoCDF2to6X2XVarVSvnx5pXr16kpGRkaOZXLi7++vDBkyRBk1apRiZ2enNGzYUOt8cHCwAigPHz7UOh4REaEAypkzZ3TqzOkZZd3X5s2blTJlyijGxsZK48aNlZs3b+Z6j+3atVM++OADTd2A1utpT34vvGmy+3kXQgghxJslt9jgaTJyVQiS0jKoMGlnkbQdNqUZZkZ5fxkfPHjAH3/8wfTp0zE3N8+2TE6bITs6OpKens7mzZvp2LFjtuUcHR1ZvXo1f/31l9bUthchNjYWlUpV4Kl++REaGsqFCxdYs2ZNjmm489o0esWKFXz44YccOnQIRVEKvY9PSkxMZNq0aaxYsQIjIyMGDx5M586dOXToULblz5w5w+HDh/n8888BGDNmDG5ubvTu3ZuoqKgX2lchhBBCiP86WXP1hggPD0dRFLy9vbWO29vbY2FhgYWFBePGjcv22jp16vDJJ5/QtWtX7O3tadGiBV999RV37tzRlBk2bBg1a9akcuXKuLm50blzZ5YtW0ZKSkqefTt37pymD1mvfv36ZVs2OTmZ8ePH07VrV6ysrArwBPLn8uXLAFrP6e7du1p9W7hwYa51eHl5MXPmTLy9vTVrx16UtLQ0vv32W+rWrUv16tVZsWIFhw8f5vjx41rlSpcujbGxMTVq1GDIkCGa52thYaEJUh0dHXWmJgohhBBCiPyTkatCYGqoT9iUZkXWdkE8Pepy/Phx1Go13bp1yzUQmjZtGh999BF79+7l6NGjLF68mOnTp7N//35NsonffvuNq1evEhwczNGjRxk9ejTz5s3jyJEj3L9/nwoVKmjq++STT/jkk0+AzEDm119/1WrP0tJSpw9paWl07twZtVqtFeAMGjSIn376SfM+Pj4+X8+iYsWK3LhxA4AGDRrw+++/a849+Zzs7Ow0WfwCAgJITU3Ntd4aNWrkq/3CYGBgoNVeuXLlsLGx4cKFC9SqVUtz/MCBA8THx3P06FHGjx+Pl5cXXbp0eWn9FEIIIcSb4/Kdx5gZ6VO6mFlRd+Wlk+CqEKhUqnxNzStKXl5eqFQqLl68qHXcw8MDAFNT0zzrsLOz47333uO9997jiy++wNfXl1mzZrFixQpNGU9PTzw9PenXrx8TJ06kbNmyrFu3ju7du2ulGbe1tdX8v5GREV5eXrm2nZaWxvvvv09ERAR79+7VGrWaMmUKY8aMybP/T9u+fTtpaWnAv/dfpkwZAC5evKjJ0Kevr6/pX1aijdzkNO3yRclumuLTx9zd3QGoXLkyd+7cITAwUIIrIYQQQhS60FuP6LDoMIqi0KKSEwMaelDF2UarTHxKOvcfp+Bm/3L/ZnoZXu2IQBQaOzs7mjRpwrfffsuwYcOeOwAwMjLC09OThISEHMu4ublhZmZGQkICBgYGeQZQOckKrK5cuUJwcDB2dnZa54sXL07x4sULXK+rq6vOMV9fX8qVK8esWbN4//33c1x39apIT0/n5MmTmlGqS5cu8ejRo1ynIyqKkq/pmkIIIYQQBbUwOJwMdeaa89/ORfHbuSjqeNjSsKwDF6Me81dkLBH3E1AU6FXPjUnvVEBPL/f17K8TCa7eIAsXLsTPz48aNWoQGBiIj48Penp6nDhxgosXL1K9evVsr9u2bRtr166lc+fOlC1bFkVR2Lp1K9u3bycoKAjI3K8qMTGRli1b4urqyqNHj5g/fz5paWk0adIk136lp6cTHR2tdUylUlGiRAnS09Pp2LEjp0+fZtu2bWRkZGjK2traYmRklGO9N2/eJCYmhps3b5KRkaEZOfPy8sLCwiLba1QqFUFBQTRp0gQ/Pz8mTJhA+fLlSUtLY//+/dy7dw99/YJNxYTM/cWio6MJDw8HMteZWVpa4uLiojWK96Tw8HDi4+OJjo4mKSlJ0/8KFSpo7tvQ0JBhw4Yxf/58DA0NGTp0KHXq1NEEWwsWLMDFxUUTbB08eJBZs2YxbNiwXPubmppKWFiY5v9v375NaGgoFhYWzxwkCyGEEOL1978t5/jj/B1W9atNmRLayzjC7z7mj7DMNfmLulVjV9gdfj0bydFrMRy9FqNT1/LD10lISWdGBx/0/ysB1otNXPh6Kmgq9tdJZGSkMnToUMXd3V0xNDRULCwslFq1ailfffWVkpCQoCn3ZPrtq1evKv3791fKli2rmJqaKjY2NkrNmjWVoKAgTfm9e/cqHTp0UJydnRUjIyOlRIkSSvPmzZUDBw7k2p/sUoEDirGxsaIo/6Yoz+4VHByca909e/Z8pusURVEuXbqk9OzZUyldurRiYGCgWFtbKw0bNlSWLFmSa0p6f39/ZcSIEfm+z6xnmF0qdn9//2yviYiIUBTl31TsGzduVDw8PBQjIyPlrbfeUq5fv66pY/78+UrFihUVMzMzxcrKSvH19VUWLlyolWZ+8+bNOinYc3ru/v7+eT67/5LX/eddCCGEKEwHr9xTXMdtU1zHbVM6LDykZGRob08zZn2o4jpum9JvxQnNsdsPE5Xp28OUwatOKd/uvaIEX7yj3HucrPx88pbiPj6zrsE/nVJS0rLfAudVUJBU7CpFecG5ol9DcXFxWFtbExsbq5ORLjk5mYiICNzd3TExMSmiHgoBy5cvZ+TIkTx69Kiou/KfJT/vQgghRKa0DDUt5h0g/O6/icNmtK9M51ouAETFJtFwZjBpGQqbBtejmkuxPOv8/VwUw9eeIS1DoZG3A4s+qI5JAZO1vQy5xQZPe7UXlAghhBBCCCGK3PJD1wm/G4+tuRHD38pcIvDF7xe5H5+5jvuHAxGkZSjUcrfNV2AF0KKyE9/1qIGxgR7Bl+5Re/oeRq0L5bc/o4hPSX9h9/IiSXAlhBBCCCGEyNHduGTm7s7cC3Rcc2+Gv12GCk5WxCalMf23CzxKTGXN8ZsAfBjgWaC6A7yL82OfWjhYGhOblMbmM7cZsvo01absosey49yKSSz0+3mRJLgS4jXVq1cvmRIohBBCiBdu+vYLJKRmUMXZhveqO2Ogr8f09pVRqWDTmduMWhdKQmoG5RwtCSjrUOD6a3vYcWT8W6wfWJcBDT1wtzcnNUPNsWsPsLPIOXnZq0iyBQohhBBCiP+cK3cesyX0Nn3re2Br/nr9gf4qOXbtAVtCI1GpYOq7FTVp06s629C9jis/HrlB8KV7QOaoVXb7b+aHgb4etdxtqeVuyycty3P1XjyXoh+/8nvJPk1GroQQQgghxH+KoiiMXBfKguCrDPjxJCnpGUXdpdfSzQeJTNzyFwCda7rgU9pG6/yYZt4UtzQGoHQxU1pVdiq0tj0dLGhZiPW9LBJcCSGEEEKI/5R9l+9xPjIOgJM3HvK/zX8hCbLzLy1DzaKQqzSdu0+TxGJsM2+dclYmhnzZ0QcnaxMmtiyPgb6EFq/XOJsQQgghhBB5WBhyFYDa7racuB7DhlN/4+1oSb8GHkXcs1ffmZsPmbDpHBejHwNQ18OO6e0r5zi1spF3cY5MePtldvGVJsGVEEIIIYT4zzh5PYbjETEY6quY19mX385FMXVbGNO3X8CzuAWNvIsXdRdfSYqisDDkKrP+uISiQDEzQya2qkCHaqWeeR3Vm0jG7oQQQgghxH9G1qhVh2qlcbQ2oY+fG51qOKNWYPjqMxy8cp+0DHUR9/LVkpiaztDVZ/hqZ2Zg1c63FHtGB9CxemkJrApIgishXnNubm7MnTu3SNresmULXl5e6OvrM3LkyCLpgxBCCJElLDKOvRfvoqeCgf6Z+y2pVCqmtq1ETbdiPE5J54MfjuE7ZRf9VpxkxeHrXIiKIzX9zQ22bsUk0n7hYX47F4Whvoov2ldmTqeqkmHxGUlw9YaJjo5m2LBheHh4YGxsjLOzM61bt2bPnj2aMm5ubqhUKo4ePap17ciRIwkICNC8DwwMRKVSoVKp0NPTo2TJknTr1o1bt25pXRcQEIBKpWLGjBk6/WnZsiUqlYrAwMBc+53Vp6dfT9a5ceNGateujbW1NZaWllSsWJHRo0drzi9fvhyVSkX58uV16l+/fj0qlQo3NzfNsU2bNtGkSRMcHBywsrKibt267Ny5M9d+Auzfv5/WrVtTsmRJVCoVW7ZsyfOa56nrxIkTDBgwQPN+6dKlBAQEYGVlhUqleua9sEaMGEH16tUxNjamatWq2ZYZOHAgHTt25NatW0ydOpWQkBDeffddnJycMDc3p2rVqqxateqZ2hdCCCEKatG+zFGrlpWdcLc31xw3MtBjSfcatPcthY2ZIfEp6ey+cIfJv56nxbwDVJi0g6Zz9jFszRmWH4ogQ114yS8URWHbn5EcCr+f73qjYpP48ch1Dl65T/oLGmVTqxV++zOKNt8e5GL0Y+wtjFnTvw5darm8kPbeFLLm6g1y/fp1/Pz8sLGxYebMmfj4+JCWlsbOnTsZMmQIFy9e1JQ1MTFh3Lhx7Nu3L9c6K1asyO7du1Gr1Vy9epUhQ4bw/vvvc+TIEa1yzs7OBAUFMX78eM2xyMhI9u7di5NT/tJsTpkyhf79+2sds7S0BGD37t107tyZ6dOn06ZNG1QqFWFhYVpBI4C5uTl3797lyJEj1K1bV3N82bJluLho/zLZv38/TZo0Yfr06djY2BAUFETr1q05duwYvr6+OfYzISGBKlWq0Lt3bzp06JCve3taWloahoaG+arLwUF7s77ExESaN29O8+bNmTBhwjO1D5n/GPTp04djx47x559/6pyPj4/n7t27NGvWjJIlSwJw+PBhfHx8GDduHCVKlOC3336jR48eWFlZ0bp162fuixBCCJGX6/cT+O3PSAAGB3jpnLc1N+LrTlVRqxXOR8ZxIPweB6/c59ztWB4np3P5TjyX78Sz9WwkDpYmtPIpnDTgv56NZMTaUADsLYxpWdmR1lVKUt2lmGbPqCx345JZGHKV1cdvakbT7C2MaFXZidZVSlItm2tykqFWWHXsBob6etT1sMPVzgyVSoWiKOwKu8Oc3Ve4EJWZUdGntDVLulfHydq0UO75TSbBVWFQFEhLLJq2Dc0gn3NhBw8ejEql4vjx45ib//tpTsWKFenTp49W2YEDB7Jo0SK2b99Oy5Ytc6zTwMAAR0dHAEqWLEn//v0ZPnw4cXFxWFlZacq98847rF+/nkOHDuHn5wdkjiQ1bdqUmzdv5qv/lpaWmraetm3bNurXr8/YsWM1x8qWLUvbtm11+tu1a1eWLVumCa7+/vtvQkJCGDVqFGvWrNGUfXqq3fTp0/nll1/YunVrrsFVixYtaNGiRb7uKUtgYCBbtmxh+PDhfP7551y/fp2MjIx81eXm5sbIkSM10/Ky/hsSEpJt+evXr+Pu7s6aNWuYP38+p0+fxtPTkwULFmiNTM6fPx+Ae/fu6QRXISEhNGrUCIC33noLgODgYD755BOtcsOHD2fnzp1s3rxZgishhBAv1MKQcNQKNPJ2oEJJqxzL6empqFzamsqlrRkc4IWiKETFJnMxOo7Vx26x+8IddpyPLrTgatXRzL9zDPRU3I9P4ccjN/jxyA0sTQzwKm6Bp0Pm60F8Cj8du0FyWmZQVbmUNX8/TOR+fCorjtxgxZEbVCxpxbzOvngVt8iz3cX7rvLVzkua907WJtTxsOPK3cf8dTszqLIwNqBPfXcGB3hiYqhfKPf7ppPgqjCkJcL0kkXT9ieRYGSeZ7GYmBh27NjBtGnTtAKrLDY2Nlrv3dzcGDRoEBMmTKB58+bo6eU9gzQ6OppNmzahr6+Pvr72D6iRkRHdunUjKChIK7iaOXNmnlMC88PR0ZHVq1fz119/UalSpVzL9u3bl4YNGzJv3jzMzMxYvnw5zZs3p0SJErlep1arefz4Mba2ts/d3+yEh4ezfv16Nm7cqPP8XoSxY8cyd+5cKlSowNdff02bNm2IiIjAzs4uz2vr1avHpUuX8Pb2ZuPGjdSrVy/H5xIbG5vtVEwhhBCiMKRlqPl8WxjrT/4NwOBGuqNWuVGpVJS0MaWkjSk2ZkbsvnCH4It3SUnPwNjg+f49Dr8bz/HrMeipIHhMAOH3MkfGdp2/w+PkdM7cfMSZm4+0rvF1sWF0E2/8vOxIVyscDL/P1tBIdp6P5nxkHK2/OUhgmwq8X8M5x2QTl+88Zt7uKwBUcLLiyt3HRMUms/nMbQDMjPTp7edG/wYe2JjJ2qrCJMHVGyI8PBxFUShXrly+r/nf//5HUFAQq1atonv37tmWOXfuHBYWFqjVapKSkoDM0YrsAri+fftSv3595s2bx6lTp4iNjaVVq1b5Dq7GjRvH//73P61j27ZtIyAggGHDhnHgwAEqV66Mq6srderUoWnTpnTr1g1jY2Ota6pWrYqnpyc///wz3bt3Z/ny5Xz99ddcu3Yt1/Znz55NQkIC77//fr76W1CpqamsXLlSZ5rfizJ06FDNVMNFixaxY8cOfvjhBz7++OM8rzUyMqJ48cxUtra2tjmOKP7888+cOHGCJUuWFF7HhRBCiH88TEhl8KrTHLn2AICxzbyp6fbsH4JWLW2Dg6Ux9x6ncPRaDP5lc/83OTE1nVVHb/I4JZ3hb3npbKK77kTmqNVb5YrjbGuGs60ZjbyLk5qu5tr9eK7eTSD8bjxX78WTlJZB11ouBHg7aIImQ30VjbyL08i7OHfjkhm1PpRD4Q8Yt/EcB67cZ1q7ylibGmq1mZ6hZuyGs6RmqHm7XHG+71mD5DQ1p2485FjEA4wN9Oha21USVrwgElwVBkOzzBGkomo7H7J2JS9IOk0HBwfGjBnDpEmT6NSpU7ZlvL29+fXXX0lJSeGXX35hw4YNTJs2LduyPj4+lClThp9//png4GC6d++OoaH2L4Tp06czffp0zfuwsDDNWqixY8fSq1cvrfKlSpUCMtdS/fbbb1y9epXg4GCOHj3K6NGjmTdvHkeOHMHMTPs59enTh6CgIFxcXIiPj6dly5Z8++23OT6LNWvWEBgYyC+//KIJKg4cOKA1ZW/JkiV069Ytxzry4urq+tICK0BrzZmBgQE1atTgwoULhVZ/SEgIvXr14rvvvqNixYqFVq8QQog3m6IopGUoXLn7mEE/neJWTBLmRvrM6VSVphWz/7Avv/T0VDSpUILVx27yx/noHIOrlPQM1hy7ybfB4dyPTwXAysRAa5PilPQMNp7OHCnqXFN7XbeRgR7lHK0o55jz9MWnFbcyYWWf2izZf43Zf1xi259RnLn5iK86+lDPy15TbumBa5z9OxYrEwOmt6+MSqXC1Eif+mXsqV/GPpcWRGGQ4KowqFT5mppXlMqUKYNKpeLChQs665By89FHH7Fw4UIWLlyY7XkjIyO8vDKH3ytWrMiVK1f48MMPWblyZbbl+/Tpw4IFCwgLC+P48eM65wcNGqQ1MpSVKAHA3t5e01ZOPD098fT0pF+/fkycOJGyZcuybt06evfurVWuW7dufPzxxwQGBtKjRw8MDHL+UVi3bh19+/Zlw4YNNG7cWHO8Ro0ahIaGat7nNa0wL9mN9r1shbWXxb59+2jdujVff/01PXr0KJQ6hRBCvLl2hd1hwqY/eZycTspTadNdbM34rkcNvB0tC6Wtpv8EV7vC7jD13Uo6CSR+Cb3NzB2XuP0oc8ZOMTNDHiamMXf3FVpXKUkJKxNNn2MSUilhZUyAd+F8eKqnp+LDAE/qetoxfM0ZbsYk0vX7Y3Sp5cInLcsRHZvM3F2Z0wEnta6o6Yt4eSQV+xvC1taWZs2asWDBAhISEnTO55Su28LCgk8//ZRp06YRFxeXZzuffvopa9as4fTp09me79q1K+fOnaNSpUpUqFAh2356eXlpXrkFPXlxc3PDzMws2/u1tbWlTZs27Nu3TyeZx5PWrFlDr169WL16Na1atdI6Z2pqqtXXrMyFr4snU+2np6dz6tSpAk0bzUlISAitWrVixowZWinihRBCiGfxID6FcRv/5H58qk5g1cjbgV+G+BVaYAVQ19MOC2MD7j5O4ezfj7TOhVy6y4i1odx+lEQJK2OmtavE0U/epqqzDfEp6Xz+278zQNYez9ya5v0azjrTBZ9XVWcbto9oQPc6rgCsOX6TZnP2M3T1GVIz1DTydqBDtVKF2qbIHxm5eoMsXLiQevXqUatWLaZMmYKPjw/p6ens2rWLRYsW5TglbMCAAcyZM4c1a9ZQu3btXNvw8PDg3XffZdKkSWzbtk3nfLFixYiKitKZDpgfjx8/Jjo6WuuYmZkZVlZWBAYGkpiYSMuWLXF1deXRo0fMnz+ftLQ0mjRpkm19y5cvZ+HChTkmcFizZg09evRg3rx51KlTR9O2qakp1tbWOfYzPj6e8PBwzfuIiAhCQ0OxtbXVSfeel2epKzo6mujoaM11586dw9LSEhcXF62kEwsWLKBMmTKUL1+eOXPm8PDhQ61AMzw8nPj4eKKjo0lKStKM0lWoUAEjo+znaWcFViNGjKBDhw6aZ2ZkZPTCEoEIIYT4b/tsaxgxCamUc7Tkux41MDHUx8hAD2MDvReS4c7YQJ8Abwe2/RnFH2F38HUpBmSuZZr2T/DUsXppPm9bSdP+520r0ebbg2w9G0mXms6ULmbGwfD7qFSZwdWLYGFswNS2lWhZ2YlxG//kZkwixCZjaWLAF+19Cm02iigYGbl6g7i7u3P69GkaNWrE6NGjqVSpEk2aNGHPnj0sWrQox+sMDQ2ZOnUqycnJ+Wpn9OjR/Pbbbxw7dizb8zY2Ns80BW7SpEk4OTlpvbKSL/j7+3Pt2jV69OhBuXLlaNGiBdHR0fzxxx94e3tnW5+pqWmumfGWLFlCeno6Q4YM0WpzxIgRufbz5MmT+Pr6atK1f/TRR/j6+jJp0qQC3/Oz1LV48WJ8fX01e4I1bNgQX19ffv31V61yM2bM4Msvv6RKlSocOHCAX375BXv7f+di9+vXD19fX5YsWcLly5c1/YiMzHl94fLly0lMTOSLL77Qembt27cv8L0LIYR4NWWt434Zdofd4dezkeipYGZHH5xtzXCwNMba1PCFpg7PWrv1x/l/P9Rde+IWV+7GU8zMkE/fqaDVfqVS1nzwzyjSp7/8xapjNwCo72WPs23+1sc/q7qeduwY2YA+fu7YWxgzo70PjtYyHbCoqJSX+RPymoiLi8Pa2prY2FitvZoAkpOTiYiIwN3dHRMT+cYVr5+sfa7OnDlD1apVi7o7rzT5eRdCCG3rT9xi8q/nmfJuRd57QSMyWWKT0mg6Zx934lIY6O/BhBYvb1uPx8lpVJu6i7QMhd0f+Weum/oqhAcJqXzWpiI967np9jcxjbdmZ5ZRqTK3QV3YrRotKxfOflmi6OQWGzxNRq6EEEIIIUSeMtQK8/ZcISktgwmbznHsn/TnL8oX2y9wJy4Fd3tzRjUu+0LbepqliSH1PDNnc/wRFs3CkKs8SEjFw8GcrrWzn5ZvbWbIhJaZAaCigJ25EY3LP1+yK/H6keBKCCGEEELkae/Fu5oMeelqhQ9XneZWTOILaetQ+H3WnshMCPFlB58XOgUwJ00rZgZGG07+zQ8HIwD4pEV5DHNJTtGhWilqumWu0XqvhjNGBvKn9ptGvuJCvGHc3NxQFEWmBAohhCiQH49cB6BnXVcql7ImJiGV/j+eJD4lvdDbmr49M3FEj7qu1HIvmoRITf4ZdYq4n0Bqupp6nna8Xb54rteoVCoWf1CdKe9WZMTbZV5GN8UrRoIrIYQQQgiRq4j7CRy4kpn9rl8DD5b2qI6DpTEXox8zal0oanXhLeG/FZPI+cg49PVUL3064JOKW5ng62IDZG5pOrFV+Xxl4LOzMKZHXTdMjV7+aJsoepKKXQghhBBC5Oqno5nZ7xp5F9dkv1vSvTqdlx5lV9gd3l1wCE8Hc0oVM6WkjSm2ZkYY6OthoKfCQF+FtakhlUpa62zIm509F+4AUN21GMXMs9/642Vp51uKMzcf0bmmMxVL5rwNixBZijy4WrhwIV999RVRUVFUrFiRuXPn0qBBg2zLHjx4kHHjxnHx4kUSExNxdXVl4MCBjBo1Sqvcxo0b+fTTT7l69Sqenp5MmzaNdu3avYzbEUIIIYT4T0lKzWDDycz1T1mb1gJUcynGjPaVGb3hLOdux3Ludmyu9bjYmtG5ljMdq5emuGXOGVj3XLwLQOM8puC9DB/UdqVSKWt8SklgJfKnSIOrdevWMXLkSBYuXIifnx9LliyhRYsWhIWFZbtBqrm5OUOHDsXHxwdzc3MOHjzIwIEDMTc3Z8CAAQAcOXKETp06MXXqVNq1a8fmzZt5//33OXjwYJ4b4AohhBBCvCn+fpjIrJ2X6FLLhdoeOe/7+OvZ28Qlp+Nia4Z/WQetc+2rlaaKsw1hkXFEPkri9qMkbj9MIi45jbQMhQy1QlqGmtsPk7gZk8jMHZf4+o/LNKlQgomtylO6mPYeUI+T0zj6TxbCt1+BTHt6eiqq/bOJsBD5UaT7XNWuXZtq1appbWBbvnx52rZtyxdffJGvOtq3b4+5uTkrV64EoFOnTsTFxfH7779ryjRv3pxixYqxZs2afNUp+1wJIUB+3oUQr7fv9l/TrJHKzkfrQ9l0+jbGBnos61UTPy97nTKKovDONwc5HxnHJy3LMaCh5zP1JTE1nd/+jGLN8ZucvvkIyJz2t/HDelrltp+LYvCq07jbmxM8JuCZ2hKisL0W+1ylpqZy6tQpmjZtqnW8adOmHD58OF91nDlzhsOHD+Pv7685duTIEZ06mzVrlmudKSkpxMXFab2EEEIIIV5XEfcTmLb9Ap//doHQW490zj9KTGXbn1EApKSr6bP8BIfC7+uUO33zEecj4zA20OO96s++abCZkQHv1XBm02A/tg2rj5G+HqduPOTUjRitcrv/WW/1drminxIoxLMosuDq/v37ZGRkUKKE9pBviRIliI6OzvXa0qVLY2xsTI0aNRgyZAj9+vXTnIuOji5wnV988QXW1taal7Pzi91xXIiXJTAwsMhSrkdHR9OkSRPMzc2xsbEpkj4IIcSbav/le5r//+7ANZ3zP5/6m9R0NeUcLXmrXHGdACslPYOQS3f54p+U6K2rlCy05BKVSlnT1rdkZt/2R2iOZ6gVQi5l9vtVmBIoxLMo8lTsT6e0VBQlzzSXBw4c4OTJkyxevJi5c+fqTPcraJ0TJkwgNjZW87p161YB7+L1ER0dzbBhw/Dw8MDY2BhnZ2dat27Nnj17NGXc3NxQqVQ6rxkzZmjKbNy4kdq1a2NtbY2lpSUVK1Zk9OjRmvPLly9HpVJRvnx5nT6sX78elUqFm5ub5timTZto0qQJDg4OWFlZUbduXXbu3JnrvTg5OfHll19qHRs3bhwqlUrrfgDefvttunbtqnWsadOm6Ovrc/To0WzrP3PmDO+99x4lSpTAxMSEsmXL0r9/fy5fvqxVbuPGjQQEBGBtbY2FhQU+Pj5MmTKFmJiYZ3oW+ZWcnEyvXr2oXLkyBgYGtG3bVqfMmDFjtJ7Fd999R4MGDShWrBjFihWjcePGHD9+vMBtb9q0iWbNmmFvb49KpSI0NFSnzJw5c4iKiiI0NFTzzJYuXUpAQABWVlaoVCoePXpU4LaFEELk7cng6vdzUVqb/SqKwqpjNwHoXteVRR9U0wqwBvx4kmpTdtEr6AQnbzxEX09Fr3puhdq//v9MVdwZFs31+wkAnLn5kJiEVKxNDanhJuucxOupyIIre3t79PX1dUaU7t69qzPy9DR3d3cqV65M//79GTVqFIGBgZpzjo6OBa7T2NgYKysrrdd/0fXr16levTp79+5l5syZnDt3jh07dtCoUSOGDBmiVXbKlClERUVpvYYNGwbA7t276dy5Mx07duT48eOcOnWKadOmkZqaqlWHubk5d+/e5ciRI1rHly1bppOwZP/+/TRp0oTt27dz6tQpGjVqROvWrTlz5kyO9xMQEEBwcLDWsZCQEJydnbWOp6amcuTIERo1aqQ5dvPmTY4cOcLQoUP54YcfdOretm0bderUISUlhVWrVnHhwgVWrlyJtbU1n376qabcxIkT6dSpEzVr1uT333/nr7/+Yvbs2Zw9e1azDrCgzyI/0tLSyMjIwNTUlOHDh9O4ceNsy1lYWGBn9+8i5ZCQELp06UJwcDBHjhzBxcWFpk2bcvv27QK1n5CQgJ+fn1bA/bSrV69SvXp1ypQpQ/HimdM7EhMTad68OZ988kmB2hNCCJF/qelqjvyTFMLVzgy1AssO/TtCdPjqAyLuJ2BhbEDbqqUwNtDXCrD+CLtDQmoGxS2N6VrbhfUD61KpkLPllSmROWKmKPDDwcy+7b6QmSUwwNsBQ/0i//xfiGejFKFatWopH374odax8uXLK+PHj893HVOmTFFcXV01799//32lRYsWWmWaN2+udO7cOd91xsbGKoASGxurcy4pKUkJCwtTkpKSNMfUarWSkJpQJC+1Wp3v+2rRooVSqlQpJT4+Xufcw4cPNf/v6uqqzJkzJ8d6RowYoQQEBOTaVlBQkGJtba0MHTpU6devn+b4rVu3FGNjY2X8+PFaX7fsVKhQQfnss89yPL9kyRLFwsJCSUtLUxRFUeLi4hRDQ0NlwYIFip+fn6bc/v37FUC5cuWK5lhgYKDSuXNn5cKFC4qlpaXWM0lISFDs7e2Vtm3bZttu1rM6duyYAihz587NtdzzPouIiAgFUNatW6f4+/srxsbGyrJly7TK9OzZU3n33Xd1rp08ebJSpUqVHOtOT09XLC0tlRUrVmiO+fv7K0OGDFGGDBmiWFtbK7a2tsrEiROz/V7L6tuZM2e0jru6uiqA5tWzZ0+t88HBwQqg9X33Ksru510IIV51h8LvKa7jtinVp+5Sgi/eUVzHbVPKf/q78ighVVEURfnwp5OK67htyv82n9O6LjktXZm544Iya+dFJfTmQyUjI/9/YzyLw+H3Fddx2xTv/21XHsSnKG/PDlFcx21Tfgm9/ULbFaKgcosNnlakqdg/+ugjunfvTo0aNahbty5Lly7l5s2bDBo0CMicrnf79m1+/PFHABYsWICLiwvlypUDMve9mjVrlmZEBWDEiBE0bNiQL7/8knfffZdffvmF3bt3c/DgwRd2H0npSdReXTRp3o91PYaZoVme5WJiYtixYwfTpk3D3Nxc53xB1sQ4OjqyevVq/vrrLypVqpRr2b59+9KwYUPmzZuHmZkZy5cvp3nz5nmOTqrVah4/foytrW2OZRo1akR8fDwnTpygbt26HDhwgLJly9KxY0dGjRpFYmIiZmZmBAcHU7p0aby8vIDM6RBBQUEsWLCAcuXKUbZsWdavX0/v3r0B2LlzJ/fv3+fjjz/Ott2sZ7Vq1SosLCwYPHhwruWe91lkGTduHLNnzyYoKAhjY+N8XZOXxMRE0tLSdJ7zihUr6Nu3L8eOHePkyZMMGDAAV1dX+vfvn696T5w4QY8ePbCysmLevHmYmpoWSn+FEELkbf/lzHVTDcvY41/WgXKOllyMfsyq4zfoWK00f5zPTBrRrY72zAljA33GNiv30vpZx8OWyqWsOXc7ls9/CyP8bjwGeiqddO9CvE6KdMy1U6dOzJ07lylTplC1alX279/P9u3bcXXN3KAuKiqKmzdvasqr1WomTJhA1apVqVGjBt988w0zZsxgypQpmjL16tVj7dq1BAUF4ePjw/Lly1m3bt0bv8dVeHg4iqJoAtO8jBs3DgsLC61XSEgIAMOGDaNmzZpUrlwZNzc3OnfuzLJly0hJSdGpp2rVqnh6evLzzz+jKArLly+nT58+ebY/e/ZsEhISeP/993MsU6ZMGUqVKqXpV0hICP7+/hQvXhwPDw8OHTqkOf7klMDdu3eTmJhIs2bNAPjggw+0pgZeuXIFIM9ndeXKFTw8PDA0NMzzfuDZn0WWkSNH0r59e9zd3SlZsmS+r8vN+PHjKVWqlM60QmdnZ+bMmYO3tzfdunVj2LBhzJkzJ9/1Ojg4YGxsjKmpKY6Ojlhby+aLQgjxPNYcv8nHP5/l1I2HeZbNWm/VsKwDKpVKk4p9+aHr/HT0BulqhRquxSjnWLTLIFQqFf0bZvZt0+nM6ek13WyxNs3fv6tCvIqKdOQKYPDgwTl+8r98+XKt98OGDdMapcpJx44d6dixY2F0L19MDUw51vXYS2vv6bbzQ/lnO7O8koVkGTt2LL169dI6VqpUKSBz/dBvv/3G1atXCQ4O5ujRo4wePZp58+Zx5MgRzMy0R9L69OlDUFAQLi4uxMfH07JlS7799tsc216zZg2BgYH88ssvmrU6Bw4coEWLFpoyS5YsoVu3bgQEBBASEsKECRMICQlh7NixAPj7+xMSEkLDhg05evQoCxcu1Fz7ww8/0KlTJwwMMr/9u3TpwtixY7l06RLe3t6aZ5UXJR/JV55W0GfxpBo1ahSorbzMnDmTNWvWEBISorOHU506dbTurW7dusyePZuMjAz09fULtR9CCCFyl5KeweRfzpOaoWb9yb+p4VqMgf6evF2uOHp62v8O3XucQlhU5pYy9ctk7lvVpkpJvtp5kTtxKSwIuQrojloVlZaVHPnSxpTbj5IAeLu8pGAXrzdZLVgIVCoVZoZmRfLK7x/3ZcqUQaVSceHChXyVt7e3x8vLS+v19NQuT09P+vXrx/fff8/p06cJCwtj3bp1OnV169aNo0ePEhgYSI8ePTRBTXbWrVtH3759Wb9+vdZoSo0aNQgNDdW82rRpA2RODTx06BAPHjzgzJkzNGzYEMgMrrICv6SkJM3IVUxMDFu2bGHhwoUYGBhgYGBAqVKlSE9PZ9myZQCULVsWgIsXL+b6jMqWLcvVq1dJS0vL63E+07N4WnbTOZ/VrFmzmD59On/88Qc+Pj6FVq8QQojCdzk6ntQMNUb6ehjp63HyxkP6/3iSpnP3c/VevFbZA1cyR60qlbLC3iJzCrmRgR696rkDmenOi5kZ0qKS08u9iRwY6OvRt7675n1jScEuXnMSXL0hbG1tadasGQsWLCAhIUHn/POmxHZzc8PMzCzbum1tbWnTpg379u3LdRrcmjVr6NWrF6tXr6ZVq1Za50xNTbUCPUtLSyAzuEpISODrr7+mTJkymvVL/v7+nDx5kt9++w13d3fNVNNVq1ZRunRpzp49qxWszZ07lxUrVpCenk7Tpk2xt7dn5syZ2fYz61l17dqV+Ph4rVGx7Mo9y7N4kb766iumTp3Kjh07chwNezo9/dGjRylTpoyMWgkhRBE4dzsWgNoethwY14hB/p5YmhgQfjeekWtDSc9Qa8ruy5oSWEZ73VLXWi6YGWX+Dn+vhjMmhq/O7/NONZ2p6mxDKx8n3OwL74NEIYpCkU8LFC/PwoULqVevHrVq1WLKlCn4+PiQnp7Orl27WLRokdao1uPHj3VS2puZmWFlZUVgYCCJiYm0bNkSV1dXHj16xPz580lLS6NJkybZtr18+XIWLlyolRb8SWvWrKFHjx7MmzePOnXqaNo2NTXNdb2Oh4cHLi4ufPPNN3Tr1k1zvGTJkri6urJ48WLee+89zfEffviBjh076iTicHV1Zdy4cfz222+8++67fP/997z33nu0adOG4cOH4+Xlxf3791m/fj03b95k7dq11K5dm48//pjRo0dz+/Zt2rVrR8mSJQkPD2fx4sXUr1+fESNGFPhZFERYWBipqanExMTw+PFjzX5TOW0cPHPmTD799FNWr16Nm5ub5jlnravLcuvWLT766CMGDhzI6dOn+eabb5g9e7bmfExMDDdv3iQyMhKAS5cuAZnJThwdHXPsb3R0NNHR0YSHhwNw7tw5LC0tcXFxyTV5iRBCvMmygqtKpawpYWXC+Bbl6O3nRpOv93HudizfHYjgwwBP1GqFA1f+SWbxVFIIazND/teqAr+evU2/J0aKXgXmxgZsGeJX1N0QonC8yLSFr6uCpmJ/nURGRipDhgxRXF1dFSMjI6VUqVJKmzZtlODgYE2Zp9NoZ70GDhyoKIqi7N27V+nQoYPi7OysGBkZKSVKlFCaN2+uHDhwQFNHVvrxnMyZM0cr/bi/v3+2bT6dwjs7PXv2VABl7dq1Wsf79u2rAMrKlSsVRVGUkydPKoBy/PjxbOtp3bq10rp1a837EydOKO3bt1ccHBwUY2NjxcvLSxkwYIBWSndFUZR169YpDRs2VCwtLRVzc3PFx8dHmTJlik4q9vw+i6fllO5cUXL+WmV5OhV7TuUnT56sKePv768MHjxYGTRokGJlZaUUK1ZMGT9+vFYq9qCgoDzreffdd3W+fpMnT872uqCgoBzvvyi97j/vQoj/hnfmH1Bcx21TfvszUuv4+hM3Fddx25QyE7cr4XcfK3/eeqS4jtumVPj0dyUlLaOIeivEf09BUrGrFCWfq/ffIHFxcVhbWxMbG6uzoXBycjIRERG4u7vrJAEQ4r8gICCAqlWrMnfu3KLuSpGTn3chRFFLTVdTafJOUjPU7B/bCBe7f5NGKYpCr6AT7Lt8j+quxQgo68DsXZdpXL4E3/cs3CRIQrzJcosNniZrroQQQgghXlGX7zwmNUONtakhzrbaiaVUKhXT21fGwtiAUzcesvCfTID+Ze2LoqtCCCS4EkIIIYR4Zf273soq2wzBpWxMmdAyc1/GpLQMQHe9lRDi5ZGEFkIILVmbMgshhCh6TyazyEmXmi5sOxvFkWsPcLUzw9VOMu4JUVRk5EoIIYQQ4hX11z/BVeVcgis9PRVfveeDf1kHRjf1flldE0JkQ0auhBBCCCFeQanpai5GPQZyD64AShczY0WfWi+jW0KIXMjIlRBCCCHEK+jK3cxkFlYmBrjYmuV9gRCiyElwJYQQQgjxCvrrifVW2SWzEEK8eiS4EkIIIYR4BZ3Lx3orIcSrRYIrIYQQQohX0LnbcUDumQKFEK8WCa6EKAKBgYFUrVq1SNqOjo6mSZMmmJubY2NjUyR9EEIIkbu0DDUXojKDKxm5EuL1IcHVGyY6OpoRI0bg5eWFiYkJJUqUoH79+ixevJjExERNOTc3N1QqldardOnS2Z43NTXFzc2N999/n71792q1d/36dVQqFaGhofnuY0BAgE7bKpWKQYMGacoEBwfTqFEjbG1tMTMzo0yZMvTs2ZP09HQgc68mlUpFsWLFSE5O1qr/+PHjmjqzEx4ejqWl5TMHHsnJyfTq1YvKlStjYGBA27ZtdcqMGTOGPXv2aN6fP3+eDh06aJ7r3Llzn6ntTZs20axZM+zt7XN87nPmzCEqKorQ0FAuX74MwNKlSwkICMDKKnOTykePHj1T+0IIIQrHlTvxpKarsTQxwNVOklkI8bqQ4OoNcu3aNXx9ffnjjz+YPn06Z86cYffu3YwaNYqtW7eye/durfJTpkwhKipK8zpz5ky25y9dusSPP/6IjY0NjRs3Ztq0ac/d1/79+2u1HRUVxcyZM4HMQKRFixbUrFmT/fv3c+7cOb755hsMDQ1Rq9Va9VhaWrJ582atY8uWLcPFxSXbdtPS0ujSpQsNGjR4pn6npaWRkZGBqakpw4cPp3HjxtmWs7CwwM7OTvM+MTERDw8PZsyYgaOj4zO1DZCQkICfnx8zZszIsczVq1epXr06ZcqUoXjx4pr2mzdvzieffPLMbQshhMifDLVCYmp6rmU0ySxKSjILIV4nss9VIVAUBSUpqUjaVpma5vuX7uDBgzEwMODkyZOYm/+7e3vlypXp0KEDiqJolbe0tMz1D/0nz7u4uNCwYUOcnJyYNGkSHTt2xNv72TcyNDMzy7HtXbt24eTkpAm2ADw9PWnevLlO2Z49e7Js2TK6dOkCQFJSEmvXrmX48OFMnTpVp/z//vc/ypUrx9tvv83hw4dz7eP169dxd3dn3bp1LFy4kKNHj7Jo0SJ69+7NokWLADh06FC2o0CBgYFs2bJFM7JUs2ZNatasCcD48eOzbS8gIIBKlSoB8NNPP6Gvr8+HH37I1KlTNd8D3bt31/QtO25ubty4cQOAH3/8kZ49e7J8+XJGjhwJZI74CSGEeHHSMtT0DjrBqRsP2fhhPSqUtMq2nCaZRWmZEijE60SCq0KgJCVxqVr1Imnb+/QpVGZ5Txd48OCBZsTqycDqSYXxydiIESOYOnUqv/zyCx9//PFz15cdR0dHoqKi2L9/Pw0bNsy1bPfu3fnqq6+4efMmLi4ubNy4ETc3N6pVq6ZTdu/evWzYsIHQ0FA2bdqU7/6MGzeO2bNnExQUhLGxcYHvpyBWrFhB3759OXbsGCdPnmTAgAG4urrSv3//fF1/4sQJevTogZWVFfPmzcPU1PSF9lcIIYS2ab9d4GD4fQC++P0CK/vWzrbcuSfSsAshXh8yLfANER4ejqIoOqNJ9vb2WFhYYGFhwbhx47TOjRs3TnPOwsKC+fPn59mOra0txYsXz3HkJL8WLlyo1baFhQUrVqwA4L333qNLly74+/vj5OREu3bt+Pbbb4mLi9Opp3jx4rRo0YLly5cDmVMC+/Tpo1PuwYMH9OrVi+XLl2Nllf2niDkZOXIk7du3x93dnZIlSxb8ZgvA2dmZOXPm4O3tTbdu3Rg2bBhz5szJ9/UODg4YGxtjamqKo6Mj1tbyj7YQQrwsm8/8zfLD1wEw0FNx4Mp9Dly5p1Mu/YlkFpVyGNkSQryaZOSqEKhMTfE+farI2i5Q+adGp44fP45araZbt26kpKRonRs7diy9evXSvLe3t89XG4qi5GsUbNWqVQwcOFDz/vfff9esderWrRsTJ07UKp+1PkhfX5+goCA+//xz9u7dy9GjR5k2bRpffvklx48fx8nJSeu6Pn36MGLECD744AOOHDnChg0bOHDggFaZ/v3707Vr1zxHwrJTo0aNAl/zrOrUqaP1bOvWrcvs2bPJyMhAX1//pfVDCCFEwZyPjGXCpnMADG3kRWJqBssORTDj94v4edqjp/fv7/aQS/dISVdjYWyAm132s02EEK8mCa4KgUqlytfUvKLk5eWFSqXi4sWLWsc9PDwAsp0eZm9vj5eXV4HaefDgAffu3cPd3T3Psm3atKF27X+nQ5QqVUrz/9bW1nm2XapUKbp370737t35/PPPKVu2LIsXL+azzz7TKteyZUsGDhxI3759ad26tVYiiSx79+7l119/ZdasWUBmgKhWqzEwMGDp0qXZjnZlyWmapRBCCAHwKDGVQT+dIjlNjX9ZB0Y1KUtsUhrrT97ifGQcW/+M5N2qmf8GXop+zKh1oQC09S2pFXQJIV59Mi3wDWFnZ0eTJk349ttvSUhIeGHtzJs3Dz09vWzTjz/N0tISLy8vzet51v8UK1YMJyenbO9NX1+f7t27ExISkmOQdOTIEUJDQzWvKVOmYGlpSWhoKO3atXvmfhW2o0eP6rwvU6aMjFoJIcQrSlEURqwN5VZMEi62ZszrXBV9PRW25kYM8s/8gPOrnZdISc/g7uNk+iw/weOUdGq52/LpOxWKuPdCiIKSkas3yMKFC/Hz86NGjRoEBgbi4+ODnp4eJ06c4OLFi1SvXrCkHI8fPyY6Opq0tDQiIiL46aef+P777/niiy90Rp0uXbqkc32FChUwMjLKtu7ExESio6O1jhkbG1OsWDGWLFmiCXo8PT1JTk7mxx9/5Pz583zzzTfZ1jd16lTGjh2b7agVQPny5bXenzx5Ej09PU12voIKCwsjNTWVmJgYHj9+rMkKmNPGwampqYSFhWn+//bt24SGhmJhYaH1LG/dusVHH33EwIEDOX36NN988w2zZ8/WnI+JieHmzZtERkYC/z53R0fHXDM/RkdHEx0dTXh4OADnzp3D0tISFxcXbG1tn+kZCCGEgJ3no9l3+R4mhnos/qA6Nmb//rvXp747Px65wd8Pk/j+QAQ7z0dz+1ESHvbmLO1eHWMD+eBMiNeNBFdvEE9PT86cOcP06dOZMGECf//9N8bGxlSoUIExY8YwePDgAtU3adIkJk2ahJGREY6OjtSpU4c9e/bQqFEjnbKdO3fWORYREYGbm1u2dX/33Xd89913WseaNWvGjh07qFWrFgcPHmTQoEFERkZiYWFBxYoV2bJlC/7+/tnWZ2RklO81Y4WhZcuWmpTnAL6+vgA66e6zREZGasoAzJo1i1mzZuHv76+VHr1Hjx4kJSVRq1Yt9PX1GTZsGAMGDNCc//XXX+ndu7fmfdZznzx5MoGBgTn29+nplFlrz4KCgrTW3QkhhMi/DLXCrD8yN2sf0MBDJ+26mZEBIxuX5ZPN5/hqZ+aHYcXMDFnWq6ZWECaEeH2olJz+2nuDxcXFYW1tTWxsrE7muOTkZCIiInB3d8fExKSIeijeRAEBAVStWpW5c+cWdVfeGPLzLoR4HptO/81H689ibWrIgXGNsDIx1CmTnqGm6dz9XLuXgJG+Hqv716aGm8wYEOJVklts8DRZcyWEEEIIUchS09XM2Z05ajXI3zPbwArAQF+P6e0qU87RkvldqkpgJcRrTqYFCiGEEELk0+1HSRy9+oAbDxKIeJDIjQcJqBWFMU29CfAurim3/uQtbsUkYW9hTM96rrnWWcfDjh0jC74ViBDi1SPBlRCviSfXXgkhhHj5UtIzePfbQ9yPT9E513v5CcY09WZwgCcp6Wq+2XsFgGFveWFmJH9uCfGmkJ92IYQQQoh8CLl0j/vxKVibGtLKxwk3OzNc7cwJuXSXNcdv8dXOS5yPjMW7hBV34lIoZWNK51rORd1tIcRLJMGVEEIIIUQ+/Ho2c5uL92uUZmKrf/egalbRkcqlbJj8619sPxfN9nOZW4mMaFxG0qkL8YaRhBZCCCGEEHmIT0lnd9gdANpUKaVzvmttF9YOqIODpTEAHg7mtPfVLSeE+G+T4EoIIYQQAth3+R6t5h/g5PUYnXO7wqJJSVfjYW9OpVLZp2Ku7mrLtmH1Gf6WF0u7V8dAX/7MEuJNIz/1QgghhHjjxSWnMWbDWc5HxjFh0znSM9Ra538JzZwS2LpKSVQqVY71lLAy4aOm3ngVt3yh/RVCvJokuBJCCCHEG+/rPy5z73FmFsArd+PZePpvzbmYhFQOXrkPQJuqJYukf0KI14MEV0I8JTAwkKpVqxZJ29HR0TRp0gRzc3NsbGyKpA9CCPFfpVYr2R7/63YsPx65DkCLSo4AfL3rMkmpGQBsPxdFulqhUikrPB0sXkpfhRCvJwmu3iC9evVCpVIxaNAgnXODBw9GpVLRq1cvrfJt27bVuV6lUmFgYICLiwsffvghDx8+1Knv8OHDtGzZkmLFimFiYkLlypWZPXs2GRkZOmWDg4Np2bIldnZ2mJmZUaFCBUaPHs3t27c1ZRRFYdasWZQtWxZjY2OcnZ2ZPn16gZ9BcnIyvXr1onLlyhgYGGjdX5YxY8awZ88ezfvz58/ToUMH3NzcUKlUzJ07t8DtAmzatIlmzZphb2+PSqUiNDRUp8ycOXOIiooiNDSUy5cvA7B06VICAgKwsrJCpVLx6NGjZ2pfCCHeZPfjU2g0O4R3vjlA+N3HmuNqtcL/tvyFWoF3fJyY27kqpYuZcicuhWWHIgD49Z8pgW2qyKiVECJ3Ely9YZydnVm7di1JSUmaY8nJyaxZswYXF5c8r2/evDlRUVFcv36d77//nq1btzJ48GCtMps3b8bf35/SpUsTHBzMxYsXGTFiBNOmTaNz584oyr+fHC5ZsoTGjRvj6OjIxo0bCQsLY/HixcTGxjJ79mxNuREjRvD9998za9YsLl68yNatW6lVq1aB7j0tLY2MjAxMTU0ZPnw4jRs3zrachYUFdnZ2mveJiYl4eHgwY8YMHB0dC9TmkxISEvDz82PGjBk5lrl69SrVq1enTJkyFC9eXNN+8+bN+eSTT565bSGEeNMt2XeVGw8S+et2HK2/OcTmM5nT/tadvEXorUdYGBvw6TsVMDbQZ2wzbwAWhVzlr9uxHL8eg0qVud5KCCFyI/tcFQJFUUhPVedd8AUwMNLLdWHt06pVq8a1a9fYtGkT3bp1AzJHVJydnfHw8MjzemNjY02AUbp0aTp16sTy5cs15xMSEujfvz9t2rRh6dKlmuP9+vWjRIkStGnThvXr19OpUyf+/vtvhg8fzvDhw5kzZ46mrJubGw0bNtSM0Fy4cIFFixbx119/4e3tna/7vH79Ou7u7qxbt46FCxdy9OhRFi1aRO/evVm0aBEAhw4dynYUKDAwkC1btmhGlmrWrEnNmjUBGD9+fLbtBQQEUKlSJQB++ukn9PX1+fDDD5k6darm69O9e3dN37Lj5ubGjRs3APjxxx/p2bMny5cvZ+TIkQCEhITk696FEEJou/c4hZVHM3+/epew5NKdx4xad5ZD4Q/YfSEzvfqoJmUpYWUCQGufknx34Bp/3Y6j9/ITANR0s8XJ2rRobkAI8dqQ4KoQpKeqWTpiX5G0PWCeP4bGBdugsHfv3gQFBWmCq2XLltGnT58C//F+7do1duzYgaGhoebYH3/8wYMHDxgzZoxO+datW1O2bFnWrFlDp06d2LBhA6mpqXz88cfZ1p+15mjr1q14eHiwbds2mjdvjqIoNG7cmJkzZ2Jra5trH8eNG8fs2bMJCgrC2Ni4QPdXUCtWrKBv374cO3aMkydPMmDAAFxdXenfv3++rj9x4gQ9evTAysqKefPmYWoq/4gLIURhWLr/Kslpaqo427Dpw3p8s/cK8/Zc4edTmaNX5Rwt6VnXVVNeT0/FhBbl6fb9MU2Si3clkYUQIh8kuHoDde/enQkTJnD9+nVUKhWHDh1i7dq1+Qqutm3bhoWFBRkZGSQnJwPw9ddfa85nrRMqX758tteXK1dOU+bKlStYWVnh5OSUa5vXrl3jxo0bbNiwgR9//JGMjAxGjRpFx44d2bt3b67Xjhw5kvbt2+d5X4XB2dmZOXPmoFKp8Pb25ty5c8yZMyffwZWDgwPGxsaYmpo+1/RDIYQQ/3py1Gpk4zLo66kY2bgsNd1sGbH2DHFJ6UxrV0lnTyo/L3salnVg/+V7GOipaFkp93+rhBACJLgqFAZGegyY519kbReUvb09rVq1YsWKFSiKQqtWrbC3t8/XtY0aNWLRokUkJiby/fffc/nyZYYNG6ZT7sl1VU8fz5om9+T/50atVpOSksKPP/5I2bJlAfjhhx+oXr06ly5dynWqYI0aNfJzW4WiTp06WvdTt25dTRIPff2CjS4KIYQoHE+OWgWUddAc9/OyZ9/YRsQmpVHSJvuZAhNblufsrUe0rOxIMXOjl9VlIcRrTIKrQqBSqQo8Na+o9enTh6FDhwKwYMGCfF9nbm6Ol5cXAPPnz6dRo0Z89tlnTJ06FUAT/Fy4cIF69erpXH/x4kUqVKigKRsbG0tUVFSuo1dOTk4YGBho6oZ/R8Zu3ryZa3Blbm6e73sTQgjx3/L0qNXTH+iZGxtgbpzzn0Lejpac+bQJenr5X9sshHizSbbAN1Tz5s1JTU0lNTWVZs2aPXM9kydPZtasWURGZqapbdq0Kba2tlqZ/rL8+uuvXLlyhS5dugDQsWNHjIyMmDlzZrZ1ZyWb8PPzIz09natXr2rOZU0tdHV1ze7SInH06FGd92XKlJFRKyGEKCJZo1ZVnxq1KggJrIQQBSEjV28ofX19Lly4oPn/ZxUQEEDFihWZPn063377Lebm5ixZsoTOnTszYMAAhg4dipWVFXv27GHs2LF07NiR999/H/h3jdLQoUOJi4ujR48euLm58ffff/Pjjz9iYWHB7Nmzady4MdWqVaNPnz7MnTsXtVrNkCFDaNKkidZoVn6FhYWRmppKTEwMjx8/1mQFzGnj4NTUVMLCwjT/f/v2bUJDQ7GwsNCM4gHcunWLjz76iIEDB3L69Gm++eYbrSAzJiaGmzdvagLRS5cuAeDo6JjrGqvo6Giio6MJDw8H4Ny5c1haWuLi4pJnQg8hhHhT5TVqJYQQL4KMXL3BrKyssLKyeu56PvroI7777jtu3boFZI5IBQcHc+vWLRo2bIi3tzdff/01EydOZO3atVr/wA0ePJg//viD27dv065dO8qVK0e/fv2wsrLSZBzU09Nj69at2Nvb07BhQ1q1akX58uVZu3btM/W3ZcuW+Pr6snXrVkJCQvD19cXX1zfH8pGRkZoyUVFRzJo1C19fX/r166dVrkePHiQlJVGrVi2GDBnCsGHDGDBggOb8r7/+iq+vL61atQKgc+fO+Pr6snjx4lz7u3jxYnx9fTWJMRo2bIivry+//vrrM92/EEK8CVYdu6FZa+X/jKNWQghRUColp8wDb7C4uDisra2JjY3VCT6Sk5OJiIjA3d0dExOTIuqheNUEBARQtWpV5s6dW9RdEYVIft6FeD0pikLArBBuPEhkbqeqtPUtVdRdEkK8xnKLDZ4mI1dCCCGE+E85ffMRNx4kYmakT9OKJYq6O+I1lh6bwsNfwkm7l1jUXRGvCQmuhBBCCPFKS01Xs/b4Ta7di89X+c1nMjcHbl7RETMjWV4unl3iyTskHIki/nBkUXdFvCbkN44QhSA/GzALIYQoOEVR+N+Wc6w/+TceDubsGuWPfi4Z/FLT1Wz7MwqAdtVkOqB4PuqUdACU5Iwi7ol4XcjIlRBCCCFeWT8cjGD9ycyRqGv3Eth+LirX8iGX7vIoMY3ilsbU87R/GV0U/2FKqvqf/0pwJfJHgishhBBCvJL2XrzD9O2Z24ZULmUNwDd7r6BW55yLa/OZ2wC8W7VkriNcQuSHkpYZXKn/+a8QeZHgSgghhBCvnMt3HjN8TShqBbrUcuanfrWxNDbg8p14/giLzvaa2KQ09ly4C0A739Ivs7viP0pJyxyxkpErkV8SXAkhhBCiSKWkZ3AxOo5TNx5y4Mo9dvwVTd8VJ4hPSae2uy2ftamEtakhvfzcAJi/J5zsdpLZfi6K1Aw13iUsKe9k+ZLvQvwXZY1cKTJyJfJJEloIIYQQosjsuXCHTzaf405cis45VzszFn9QHSODzM+C+/i5s+xgBGFRcey5cJfGFbTTrG8+nTklsF21Ulob1gvxrDTBlYxciXyS4EoIIYQQL93DhFQ+23qeLaGZKa4tjQ0oZm6EmZE+Zkb6OFmbMqaZN8XMjTTXFDM34oO6rizZd41v9l7h7fLFNUHUrZhEjl+PQaXKXG8lRGGQkStRUDItUIjXgJubG3Pnzi2Strds2YKXlxf6+vqMHDmySPoghHh9rDtxk6GrTxOXnJZjmR1/RdNkzj62hEaip4IBDT04PrEx+z9uxI6RDdk02I8F3arhbm+uc23/Bh6YGOpx9u9Y9l+5z6PEVPZfvseXOy4CUNfDDidr0xd2f+LNkjViJSNXIr8kuHqDBAQEZPvH8ZYtW7SmTyxfvhwbGxutMhcuXKB06dK0b9+elJQUQkJCUKlU2b6iozMXGickJDBu3Dg8PDwwMTHBwcGBgIAAtm3bptUnlUrFjBkzdPrVsmVLVCoVgYGBmmObNm2iWbNm2Nvbo1KpCA0Nzde9P3z4kO7du2NtbY21tTXdu3fn0aNHuV6TdY85lQsMDKRq1ar5aj83+/fvp3Xr1pQsWRKVSsWWLVt0ypw4cYIBAwZo3i9dupSAgACsrKxy7WNeRowYQfXq1TE2Ns7xXgYOHEjHjh25desWU6dOJSQkhHfffRcnJyfMzc2pWrUqq1ateqb2hRD/Lb+ejWTcxnNs+zOKlUduZFsm9NYjPlx1ivvxqZQtYcGmwX580rI8pkb6+WrD3sKYbrVdARjw40mqTtlFj2XHNXtbdagmiSxE4VHSZeRKFIwEVyJPJ06coEGDBjRr1owNGzZgbGysOXfp0iWioqK0XsWLFwdg0KBBbNmyhW+//ZaLFy+yY8cOOnTowIMHD7Tqd3Z2JigoSOtYZGQke/fuxcnJSet4QkICfn5+2QZjuenatSuhoaHs2LGDHTt2EBoaSvfu3QtUR2FLS8v8VDchIYEqVarw7bff5ljWwcEBMzMzzfvExESaN2/OJ5988lx9UBSFPn360KlTp2zPx8fHc/fuXZo1a0bJkiWxtLTk8OHD+Pj4sHHjRv7880/69OlDjx492Lp163P1RQjxejt5PYYxG85q3q88coO0DN0/SL/bfw1FgaYVSrB1WH2qOtsUuK2BDT0wNdQn5Z8/fN3szGhTpSSft61EW1/ZOFgUHs0+V2lqlFy2ABAii6y5KgSKopCeorsQ92UwMDZ+oYt29+7dy7vvvsugQYP46quvdM4XL15cZ5Qry9atW5k3bx4tW7YEMqe2Va9eXafcO++8w/r16zl06BB+fn5A5uhZ06ZNuXnzplbZrIDo+vXr+b6HCxcusGPHDo4ePUrt2rUB+O6776hbty6XLl3C29s733U9j8DAQLZs2cLw4cP5/PPPuX79OhkZGbRo0YIWLVrkeq2bmxsjR47UjDxm/TckJCTb8tevX8fd3Z01a9Ywf/58Tp8+jaenJwsWLCAgIEBTbv78+QDcu3ePP//8U6uOkJAQGjVqBMBbb70FQHBwsE5AN3z4cHbu3MnmzZtp3bp1fh6FEOI/5vr9BPr/eJLUdDWNy5cg9NZDouOS+eP8HVr5/Psh2a2YRH7/K3OE6aOmZTE2yN9o1dOKW5mwdZgfUbHJVCpprbUuS4jClJWKHTJHsVT5HGEVby4JrgpBekoK83t2LJK2h6/4GUMTkxdS9+bNm+natSuTJ09m/PjxBb7e0dGR7du30759eywtc06Ja2RkRLdu3QgKCtIKrmbOnKk1JfBZHTlyBGtra01gBVCnTh2sra05fPjwSwuuAMLDw1m/fj0bN25EX//F/4IeO3Ysc+fOpUKFCnz99de0adOGiIgI7Ozs8ry2Xr16muBz48aN1KtXD1tb22zLxsbGUr58+cLuvhDiNfAwIZXey0/wMDENn9LWzO9SlcUhV5m/N5zlhyO0gqugQ9dRK9CgjD3lHK2eq12v4pZ4FZd06+LFenI6oJKaARJciTzItECRrfj4eN577z3Gjh2ba2BVunRpLCwsNK8nA5WlS5dy+PBh7OzsqFmzJqNGjeLQoUPZ1tO3b1/Wr19PQkIC+/fvJzY2llatWhXKvURHR2umKj6pePHimvVhL0tqaiorV67E19cXHx+fF54qeOjQoXTo0IHy5cuzaNEirK2t+eGHH/J1rZGRkea52dra4ujoiJGR7qfDP//8MydOnKB3796F2nchxKvvYUIq/X48ScT9BErZmPJ9zxqYGRnQrY4rBnoqTlx/yPnIWADiktNYdyJzNkK/Bh5F2W0h8kVRlKeCK1l3JfImI1eFwMDYmOErfi6ytl8EU1NT6tevz3fffUeXLl1yHJU4cOCA1qiUgcG/31INGzbk2rVrHD16lEOHDrF3717mzZvHZ599xqeffqpVj4+PD2XKlOHnn38mODiY7t27Y2hoWOB+Dxo0iJ9++knzPj4+HiDbIEZRFM3xihUrcuNG5uLrBg0a8Pvvvxe47fxwdXXFwcHhhdSdnbp162r+38DAgBo1anDhwoVCqz8kJIRevXrx3XffUbFixUKrVwiRt7jkNCyNDYpsP6dzf8cy6KdT3H6UhKWJAUG9a1LcMnMmRQkrE1pUdmLr2UhWHL7OzI5VWHf8FgmpGZQtYUHDMvZF0mchCiRdO5h6coqgEDmR4KoQqFSqFzY1rzBZWVkRGxurc/zRo0dYWWlPz9DX12fLli106NCBRo0asXfvXipUqKBzrbu7e45rrgAMDQ1p0KABDRo0YPz48Xz++edMmTKFcePG6YyC9OnThwULFhAWFsbx48ef6R6nTJnCmDFjtI45Ojpy584dnbL37t2jRInMDSi3b9+uSTBhavriUviam+umFX7ZCusPsX379tG6dWu+/vprevToUSh1CiHydiEqjq93XWZX2B2aVCjBnE5VsTB+uf+crz9xi//98hep6Wpc7cxY0r06ZUtoT9HrVc+VrWcj2RIayZhm3gQdigCgX30P2eBXvBbUT41UyciVyI8inxa4cOFC3N3dMTExoXr16hw4cCDHsps2baJJkyY4ODhgZWVF3bp12blzp1aZ5cuXZ5sePDk5+UXfyiuvXLlynDx5Uuf4iRMnsl13ZGxszKZNm6hVqxaNGjXir7/+eu4+VKhQgfT09Gy/Hl27duXcuXNUqlQp20AuP4oXL46Xl5fmBZmjN7GxsVoB27Fjx4iNjaVevXpA5ohS1jWlSv13Mk0dPXpU8//p6emcOnWKcuXKPXe9ISEhtGrVihkzZmiliBdCvDjhd+MZuvo0LeYdYFdY5gdGu8Lu0GHhYW7FJL7w9hVF4cqdx4zf+Ccfb/zzn+QVxfl1aP1s109VcylGpVJWpKarGbjyFJGxydhbGNFGNvgVrwnlqZErtex1JfKhSEeu1q1bx8iRI1m4cCF+fn4sWbKEFi1aEBYWhouLi075/fv306RJE6ZPn46NjQ1BQUG0bt2aY8eO4evrqylnZWXFpUuXtK41eQ1Gll60wYMH8+233zJkyBAGDBiAqakpu3bt4ocffmDlypXZXmNkZMTGjRt5//33eeutt9izZw+VK1fWnL97965OoGRnZ4ehoSEBAQF06dKFGjVqYGdnR1hYGJ988gmNGjXSGSkDKFasGFFRUblOB4yJieHmzZtERkYCaL7Ojo6OODo6ZntN+fLlad68Of3792fJkiUADBgwgHfeeSdfySzOnTunk5Aja0+opKQknb22LCwsNIFdfsTHxxMeHq55HxERQWhoKLa2ttn+HEDmOrLo6GjNdVl9dHFx0Uo6sWDBAsqUKUP58uWZM2cODx8+pE+fPprz4eHhxMfHEx0drXUvFSpUyHZ9FfwbWI0YMYIOHTpo1q0ZGRnlmPBCCPHsFEVh9h+XWRgSTlYm6Hd8nGhZ2YnAX89z6c5j2nx7kEUfVKeOR97JagriUWIqh8IfsP/yPfZfuUdUbObve5UKRjcpy+AAL/T0sh+FUqlU9KrnzpgNZzlz8xEA3eu4YWIoCQHE6+HpjYNlryuRL0oRqlWrljJo0CCtY+XKlVPGjx+f7zoqVKigfPbZZ5r3QUFBirW19XP1KzY2VgGU2NhYnXNJSUlKWFiYkpSU9FxtFJWTJ08qzZo1U4oXL65YWVkpNWrUUNasWaNVJrtnmJqaqnTo0EGxt7dXzp49qwQHBytAtq8jR44oiqIo06dPV+rWravY2toqJiYmioeHhzJ8+HDl/v37mnr9/f2VESNG5NjfKlWqKJMnT9bqW3ZtPlkmOw8ePFC6deumWFpaKpaWlkq3bt2Uhw8f5npNbveoKIoyefLkbM/5+/tnW9/kyZOVKlWq5Ludnj17asq4uroqc+bM0aoru2uCgoIURVGUiIgIBVBWr16t1K5dWzEyMlLKly+v7NmzR6ttf3//bOuJiIhQFEVRHj58qABKcHCw5pqePXsW6L5fZ6/7z7t4/WVkqJVJW84pruO2Ka7jtin9VpxQwiL//bcp6lGS0vqbA4rruG2K54TflNk7Lyqnb8QoaekZz9ReWnqGcvL6A2X2H5eUd789qLiP36Zp23XcNqXsxO3KB98fVQ5euZev+pJS0xXfKX9orr3/OPmZ+iVEUUi5/Vi5NW6/5pVw9m5Rd0kUkdxig6epFEUpkh3RUlNTMTMzY8OGDbRr105zfMSIEYSGhrJv374861Cr1bi5ufHxxx8zdOhQIHNaYL9+/ShVqhQZGRlUrVqVqVOnao1sPS0lJYWUJ/apiouLw9nZmdjYWJ0RluTkZCIiIjRTGYV4FWXtc3XmzBnNKJsoOPl5/29JSc9ArQbT1ySVcoZaYeLmc6w9cQuVCqa1rUzX2rqj2UmpGYz9+Szb/ozSHDM30qemuy1lilsQm5RGTEIqMQmpJKRkULqYKV4lLPBysMDDwYLo2GTO/v2I0JuPOHc7lqSnFu1nJqBwoGFZB2q52xZ45Gnu7svM3X2F7nVcmdq20rM9DCGKQMqNOO4t+ndj7GLvlcW8eoki7JEoKnFxcVhbW2cbGzytyKYF3r9/n4yMDE1CgSwlSpTId3rs2bNnk5CQwPvvv685Vq5cOZYvX07lypWJi4tj3rx5+Pn5cfbsWcqUKZNtPV988QWfffbZs9+MEEKIV1pyWgZtFxzi3uMUfh/RgOJWr1awfCn6MfEp6ZQuZoqDhTFqRWHMhrNsCY1ETwVfdaxCh+qls73W1Eifb7r44l/WgV1hdzgWEUNsUhohl+4Rcumeblt3HrPn4t0c+2JjZoiflz3+ZRxoUNYeJ+vnS/Iz7K0yVHctRi13mTYsXi9PZwd8epqgENkp8myBT2cMUp5Ij52bNWvWEBgYyC+//KK1h1GdOnWoU6eO5r2fnx/VqlXjm2++Yf78+dnWNWHCBD766CPN+6yRKyGEEK+HDLXCn38/wqe0DfrZrAFavO8qF6MfA7Bk/zU+fefZkubkx+Gr9zE3MqCKs02+ys/bfYU5uy9r3hvp62FtZsi9xykY6KmY27kq7/jkngRCpVLxXg1n3qvhjFqtcDH6MUeuPSDqURLFzI0oZmaErbkhJob63IxJJPxuPFfuxBNxPwE7CyOqOttQ1dkGXxcbPOwtclxH9Sz09VQ0KPPytqAQorA8nR1Q1lyJ/Ciy4Mre3h59fX2dUaq7d+/qjGY9bd26dfTt25cNGzbQuHHjXMvq6elRs2ZNrly5kmMZY2NjjF/QflFCFAU3NzeKaMavEEVi3u7LzN8bzrtVSzK3U1WtD+luPEhgYchVzftVx24wyN8TB8vC/70fcukuvYJOAFDP045hb5Whjodtjh8aLt1/VRNYOVmbcCcumdQMNfcep2Ckr8e3XX1pWjH7ZD050dNTUaGkFRVK5j51RQiRu6ezBcrIlciPIkvFbmRkRPXq1dm1a5fW8V27dmnSY2dnzZo19OrVi9WrV9OqVas821EUhdDQUJycnJ67z0II8bpISs1g/+V7qNX//SA7NjGNZYeuA/BLaKRWIKUoCpN+OU9qupr6XvZUdbYhOU3Ndweu6dRz6kYMfjP2sjAkXOdclhPXY5i7+zJJ2fyRlZahZuq2MM37w1cf0OW7o7y/5AjBF++SnqH9h9rKI9eZvv0iAGObeXNkwttc+rwFBz5uxNoBddj/caMCB1ZCiMLz9MiVWkauRD4U6T5XH330Ed9//z3Lli3jwoULjBo1ips3bzJo0CAgc7rek5uTrlmzhh49ejB79mzq1KmjSUf95Ma4n332GTt37uTatWuEhobSt29fQkNDNXUKIcR/XWq6mu4/HKPHsuOsPHqjqLtTYBlqhT/ORxMVm5Sv8iuOXCc+JR1r08xtHL7aeYk/zmfOith5Ppp9l+9hpK/HlHcrMuLtzLW3K4/c4H78v4mM7j5O5sOfTnP7URJzd13Jdt+o2KQ0Bq48xdzdV5i45ZzO6PBPR29w9V4CduZG/D6iAR/UccFIX48T1x/Se/kJ6nyxh8m//MWpGzGsP3GLT385D8DQRl4MaZS5fYOhvh7OtmbU8bDD0frVWhcmxJtG1lyJZ1GkwVWnTp2YO3cuU6ZMoWrVquzfv5/t27fj6uoKQFRUFDdv3tSUX7JkCenp6QwZMgQnJyfNa8SIEZoyjx49YsCAAZQvX56mTZty+/Zt9u/fT61atV76/QkhRFEI3HqekzceArDh1K18XfMwIZUpW8Posew4d+Lyt+l6hloh+OJdVh27wbV78c/c36fN+uMSA1aeotGsEL7edZnE1PQcyyakpLPsUAQAU9tWokfdzH8/Rq4L5fTNh0zZmjmSNNDfAw8HCwK8HfApbU1SWoZm9CotQ83Q1We4+zgz2ErNUPP1rss6bS0IDicmIRWATadvs+Hk35pzDxNSmbs7c/r56KbelHey4vO2ldn/cSP6+LlTzMyQ+/GprDhygw6LjvDxxj8B6FvfndFNyz7X8xJCvBhPr7F6eiRLiOwUWSr2V1lu6RYlNbMQb47X8ed99bGbfLL5HCoV6KlUZKgVdn/kj1dxi2zLp6arWXn0BvP3XCE2KQ2AjtVLM+u9Kjm2EZuYxvqTt/jx6HVuxfw7uuRmZ0ajcsVpUqEE9Tztn6n/5yNjafPtITKemM5YwsqYsc3K0d63lE6ihe8PXOPz3y7gZmfGntEBqBWFnsuOc/jqA/T1Mu+/dDFTdo3y16Rg33PhDn1XnMTMSJ+D495iYXA43x+MwMLYgGntKjFibSgqFWwbVp+KJa2BzHVbjb/eR1qGQuPyxdl94S7GBnpsGeJHeScrJv3yFz8euUE5R0t+G95AJ6lGWoaag1fu8+vZSP44H01CagbdarvwedtK+UriJIR4+eL23CRu17+j/6Y+9th1LV+EPRJFpSCp2It05EoIIUThOXUjhsm//gXAmKbe+JfNzND2S+jtbMsfuHKPZnP3M3VbGLFJaXg4mAOw6fTfhN99rFM+PUPN59vCqPPFHqZtv8CtmCSsTQ2p5W6Lob6K6w8SCTp0na7fHeOnZ5iOmKFWmLDpHBlqhRaVHFn8QTWcbU25E5fCmA1n6bT0iNZUvpT0DJbuzxx9+jDAE309FYb6eizoWg1XOzNNgPZZm4pae1u9Va44lUpZkZiawcCVJ/n+YObI16z3qvBu1VK0qVISRYEvd1zSXPPF9oukZSg0KGPP0u418C/rQEq6miGrTnP65kNWHcucZTGpdYVssxUa6uvRqFxx5nSqyqlPm7BjZAMJrIR4xWVNC1QZZ/7+kJErkR8SXAkhctWrVy/atm1bJG1fvHiROnXqYGJiIpsh5+FOXDKDfjpNWoZCy8qODA7w5N2qmem7fwmN1FkfFHE/gd5BJ4i4n4C9hRFftK/MrlH+NK1QArVCttPivv1nhCcpLYNyjpZ80b4yRye8zfqBdTn9aRMWf1Cd5v8kYFi876rW6FN+BB2K4M+/Y7E0MeCzNhVpXsmJXaP8Gd+iHBbGBpy4/pC2Cw5x5U5m4Lfx1G3uPk7BydqEdr7/7gFVzNyI73vUwNnWlE41nHm7vHYGWpVKxfC3MtdenbieOX1yoL8HzStl9n1MU28M9VXsv3yPQ+H3OXrtATvOR6Ongv+1qoCenoo5nariaGXCtfsJdF56lAy1QrOK+RuxMzHUp5yjlQRWQrzisoIpPXPDf97LmiuRNwmu3iC9evVCpVJlm9xj8ODBqFQqevXqpVNepVJhaGiIh4cHY8aMISEhAYDr16+jUqkIDQ3Nsc2QkBBNHU+/stLwJyQkMG7cODw8PDAxMcHBwYGAgAC2bdumqScgIACVSsWMGTN02mjZsiUqlYrAwMBc73/p0qUEBARgZZX5R82jR49yLQ9w9uxZunTpgrOzM6amppQvX5558+bled3y5cuxsbHJ9pxKpWLLli06xwcMGIC+vj5r167VORcYGIhKpaJ58+Y652bOnIlKpSIgICDPfj0tKiqKrl274u3tjZ6eHiNHjtQpM2/ePJYvX655v3//flq3bk3JkiVzvJf8yM/XY/LkyZibm3Pp0iX27NkDwLRp06hXrx5mZmY5PuM3jaIoDFt9hnuPU/AuYclXHaugUqloUqEEZkaZ+xqdvvlI65qvd10mXa1Q18OO4DEBdKnlgr6eitFNvVGpYPu5aM79/W+yoFM3Ypi/J3NN0RftK/P7iAZ0qeWiGRGyNDGkeSVH5nauio2ZIX8/TGJvLhvVPu1WTCKz/8gM6D5pWV6zya+JoT6D/D35ZagfrnZm/P0wifYLDxN86S6L92VmBRzQ0AMjA+1/zsqUsOTAx2/xZUefbNtrUqEEFZwyp3bU9bBjbFNvzTkXOzO61c5cuzXj94t8/lvmuq0utVzwdrQEwNbciG+7+qKvpyI1XY2Rvh4TW764vbOEEC9fVip2TXAl2QJFPkhw9YZxdnZm7dq1JCX9u04iOTmZNWvW4OLiolO+efPmREVFce3aNT7//HMWLlzImDFjCtzupUuXiIqK0nplbf48aNAgtmzZwrfffsvFixfZsWMHHTp04MGDBzp9DwoK0joWGRnJ3r1785VqPzExkebNm/PJJ5/ku9+nTp3CwcGBn376ifPnzzNx4kQmTJjAt99+m+868iMxMZF169YxduxYfvjhh2zLODk5ERwczN9//611PCgoKNuvXW4URSE9PZ2UlBQcHByYOHEiVapkv8bG2tpaK4hJSEigSpUqz/0M8vP1uHr1KvXr18fV1RU7OzsAUlNTee+99/jwww+fq/1XRXqGmm/2XGFBcDhxyWnPVMe+y/c4fj0GU0N9lvaojrlx5haGZkYGNPtnJOnJqYF/3Y5l69lIAD59pwKWJoaac96OlrStWgrITCwBEJecxoi1oagVaOdbii61XHIcdTEx1KdTjcxN2H88cj1f/VcUhf9t+YuktAxqudtqrn+Sp4MFmwf7UcvNlscp6fQOOsHNmETszI3oXLNg3/+Q+SHH/C5VGdrIi4XdqmGgr/3P4dC3vDA30ufc7Vj+uh2HpbEBHzXRTjxRw82WiS0z118MaeSFi51ZgfshhHh1ZY1U6Ztl/k5Vy8iVyAcJrt4w1apVw8XFhU2bNmmObdq0CWdnZ3x9fXXKGxsb4+joiLOzM127dqVbt27PNFJRvHhxHB0dtV56epnfflu3buWTTz6hZcuWuLm5Ub16dYYNG0bPnj216njnnXd48OABhw4d0hxbvnw5TZs21QRquRk5ciTjx4+nTp06+e53nz59mD9/Pv7+/nh4ePDBBx/Qu3dvredXGDZs2ECFChWYMGEChw4d4vr16zplihcvTtOmTVmxYoXm2OHDh7l//36ee75ljSDu3LmTGjVqYGxszIEDB3Bzc2PevHn06NEDa2vrbK99elpgixYt+Pzzz2nfvn2O7bm5uTF16lS6du2KhYUFJUuW5JtvvtEqk9fXQ6VScerUKaZMmaI1MvnZZ58xatQoKleunOs95yVdreZuXDIPE1NJTS+aTyNT0jMYuvoMs3dd5qudl2jwZTALQ8JzzY73NEVRNCNK3Wq74GpnrnU+a2rgtj+jSPtnn6WsoKlNlZLZbjQ7snEZDPRU7Lt8j2PXHjBpy1/8/TAJZ1tTprxbMc8+fVDHFZUKDly5T/jdvLMI/nzq78x06QZ6fNG+sk7Siiy25kas7FeLdr6lNMf61HfXWk9VEF7FLRnTzJti5kY65+wtjBno76l5P/QtL+wsdDcd7lPfnTOfNmH4217P1AchxKtLnaYmAzV/Kw9IJ0NGrkS+SHBVCBRFQZ2aUSSvZ0n22Lt3b60RoGXLltGnT598XWtqakpa2rN9up4TR0dHtm/fzuPHugvon2RkZES3bt20+r58+fJ8972wxMbGYmtrW6h1/vDDD3zwwQdYW1vTsmVLnRG6LH369NGaords2TK6deuGkZHuH4fZ+fjjj/niiy+4cOECPj7ZT5cqLF999RU+Pj6cPn2aCRMmMGrUKJ1Nw3OSlqHm79uRVKxYkdGjRxMVFVXgEVO1ouS4ga6iKNyKSSI6LplbMYlcjI7jYnQcf8ckkpCS/8AmP9Iy1Fy+81inL0mpGfT/8RQ7zkdjpK+Hh705sUlpzNxxiYYzg1l+KCJfGwAfvvqA0zcfYWygx4CGHjrn63vZY29hRExCKgeuZAZLIZfuYaCn0hmJyeJqZ877NTNHj4atOcOW0Ej09VTM7eSrNcqVE2dbM94ul7nOaWUeo1frTtxk3D9pyYc18sLTIfushlmMDfT5+v0qBLauQNfaLvT2c8uzP8+qb313vEtY4lPaml65tFPM3EjWTwnxH6SkqbmkH8mWm8GcNbgha65EvhgUdQf+C5Q0NZGTDhdJ2yWn1ENVwE9tu3fvzoQJEzRrpg4dOsTatWsJCQnJ9brjx4+zevVq3n777QL3s3Tp0lrvS5UqxaVLmZ+eL126lG7dumFnZ0eVKlWoX78+HTt2xM/PT6eevn37Ur9+febNm8epU6eIjY2lVatWea63KixHjhxh/fr1/Pbbb3mWjY2NxcIi9z8UAa5cucLRo0c1o2EffPABw4cPZ/LkyZrRvSzvvPMOgwYNYv/+/VSvXp3169dz8OBBli1blq/+T5kyhSZNmuSr7PPy8/Nj/PjxAJQtW5ZDhw4xZ86cPNtPTE3n2r0EVCoz0NPHzNwcR0fHArWdmJrO9fuJoAIPe3NMDLV/Ru7Fp/A4OQ09lQoTQz2SUjNITVcTk57Kw6Q0PB3MMTPK+9djdGwyg1edwqe0DRNblcfwqallj5PT6B10gpM3HuJia8Z71UvTsUZpLIwN6LviJMcjMqfyfdejBnU97fj17G3m7LrCzZhEAreG8Tg5nWH/bHqbk3n/jFp1qeWiWaf0JAN9Pd7xKcnyw9fZciaS248ypwR3qumMm725Tvksw98qw8+n/tbs/TT8rTJUdy2W5zPJ0queG7sv3OHnU38zppm3TlCmKAoLgsOZ9c86q/drlObDAM/sqtKhUqno5eee7748K3NjA3aOavjC2xFCvJqUtAweqzJ/Zz5WJUm2QJEvMnL1BrK3t6dVq1asWLGCoKAgWrVqhb199hmutm3bhoWFBSYmJtStW5eGDRvqTO/KUrFiRSwsLLCwsKBFixZa5w4cOEBoaKjmtXPnTs25hg0bcu3aNfbs2UOHDh04f/48DRo0YOrUqTpt+Pj4UKZMGX7++WeWLVtG9+7dMTTU/qNt+vTpmn5YWFhobUSdmxYtWmiuqVhRd+rT+fPneffdd5k0aZJWgPBkW08mC7G0tNS656zX03744QeaNWum+Rq0bNmShIQEdu/erVPW0NCQDz74gKCgIDZs2EDZsmULNAJVo0aNfJd9XnXr1tV5f+HChVyvUaszR5TUikKGWiE9Q839+BTuxCWToc7fP2pxSWlcu5dAulpNeoaaa/cSSE7799PGhJR07sRmBgwlbUzwKm5JhZJWuNmbY2FsgKIo3HyQSHpG3u19s/cKp28+Yvnh6wxceYqkJz7VjEtOo8ey45rNfG/GJDJ712X8Zuzl7dn7OB4Rg6WxASv71qJ+GXv09VS08y3NntH+fNw8M7nC17svE3wp56QQR6894HhEDEb6egz01x21yvLv1MDI/7N33mFulNfbvmfUy/buXjHYFJtuugnNQIBQQyeUhNDDL6GGUEIJkAAhCS3UFEoSSoCPUEPHFDs2Nhj3bu96u3ZXbdr7/TEarbTa7vWuy3tf1162NEWvRtLMPO855znMWd2E36NyRQ+irbLAz3n7jQFgz9FFXDqjd8LHYf8JJYwvCxHVTF76X7YVvGkJbnn127SwunTGeO4+adecuieJRCIZSoRuYWCf1zUMhN6/jCHJ9oWMXA0Aikdl2G37Ddlr94fzzz+fyy67DIA//elPXa43Y8YMHn74YTweD8OGDcsRMpm88cYb6ZTBQCCQtWzs2LHdOrt5PB4OPPBADjzwQK677jpuv/12brvtNq699tqclLfzzz+fP/3pTyxcuJAvv/wyZ18XX3wxp556avrxsGHDunzdTB5//PG00YfH40EzTCJxneKQl8WLFnHooYdy0UUX8ctf/jJru0zBlNlYTlVVJkzovg7DNE3+8pe/UFNTg9vtznr+iSee4IgjjsjZ5vzzz2efffbhm2++6XNKZCjUdaRiMOgpdWpja4KkYeJ2qVTm+1EUBSFsm/HGqMbE8nC3N+CNUY31TXEEgrDPjWkJ4rrJiroo48pCuFWFNY0xBIKioJeioP3dcqkq+X6VoNfF8to2kobF2qY4laGuX6smkuCfs21zEY9L4b+Lajn7iS944ry9ADjnyS/5em0zBQEPj5+7J2saYrwwey1frmyktjVJUdDDX87fh11GZNe6eVwqlxwygXVNcZ79Yg1XPjeXVy87oNMo0x/+a0etTtlzBFUFgZzlDlNHFjKmJMiqhhgA5+43hopOolwd+fkRk5gyLJ9DJpX3WfgoisK5+43hV//+lmdmreLsfW33vU+X1/PYRyv4eGk9igI3Hzt5UKJQEolE0leEbmEo9kSbphggAEOAR6YBS7pGiqsBQFGUPqfmDTSmZaGmLM57w1FHHYWmaQAceeSRXa4XCoV6FAgOo0eP7tV6vWHy5MkYhkEikcgRV2eccQY///nP2W233Zg8Odf6uLi4uFc1UeuaYpieACUhu0h9+PD2InkhBMvrosQ0g9lzF3DeKcdy7rnncscdd+Tsp7fHpzOcWrO5c+ficrV/hxYtWsSZZ55JQ0ND2iXPYcqUKUyZMoX58+dzxhln9Pu1Nzeff/55zuMdd9yxy/WjSYOGVDnfiMIA+QEPPrdKQcCDx6Wimxb1bRqVBbmiQAhBbasd4QIoCnoZXhTAsgQr66NpgeXz2PvxuV0MKwzk/F7cqsqokhDLa9toTei4Rde/p0c/Wo5mWuw9pphfHDWJ85+20/9Oe3QWXrfK/HURCoMe/nbBPuw8vIC9xhRz0h4jWFkf5b+LavnejuXdpuXd/P3JfFfdwtw1zVz8tzm8dMl+WamKc1Y38emyBtyq0mM6naIoHD91OL9/byl5fjc/Pbh3USivW+X4qcN7XrELTtx9BPe8uZgVdVGuf2kBn62oZ21jagLDZfeKOnbX3k1+SCQSyWDTMXJlP2f2e2Jbsn0gxdU2QHNMY01jDI9LJd/vJi/gIexzoyqKbbYhBIZp/+vgcrnSKVqZN/Wbi9raWhKJRNZzJSUleDweDjnkEE4//XT23HNPSkpKWLhwITfccAMzZszIigQ5FBUVUV1d3W0UrTNqamqoqalh2bJlAMz+3zxCeXkcOHVHKsvLstaNaiYxzWDZ4u+48LTjOGjG9/jZz36W7s3lcrkoKyvLeY2+8sQTT3DMMcfk2KBPmTKFq666ir/97W9ceeWVOdv997//Rdf1Aenz5ETe2traqKurY968eXi93k6Fq7OecwwBVq5cybx58yguLs6yhP/000+55557OOGEE3jnnXf45z//mVWr1vHz+GDWbDyBEDtNGEt+oP19+T0uhhX6Wd0QoyGaJN5UQ6S5mTVr1mCaJvPmzaMlruMtriIYClOe56MiFfVSXQpjS0NpgWUk7UmIUSVBXF040gU8LoYXBVjbGKMxmsTScwuY61qTPPelnW56+fcmsNeYYv7xk+mc8+SXLKqxjVmKgh7+fuG+OW58Y0tDXHBAz5Ean9vFI2ftwTEPfsKimlau+dd8bj1uCm1Jg7akwX3v2DWLJ+0+ghFFPVuAn7vfGBbXtHLCtGEUBntngLKphH1uTtp9OM/MWs0Ls9cCkOd3c8LU4Zw9fTQ7VOQNyjgkEomkPwjNRHfElWKLK0uzUGXXBUk3SHG1DdAYtSNQumnRENVoiGqoioJLVTAskc4PjsR1RIb7WGfCZXMxadKknOdmzZrFvvvuy5FHHskzzzzDDTfcQCwWY9iwYRx77LH86le/6nJ//REVjzzyCLfeemv68Y9Otu3Lf/eHR7j6sp9krVuXKuL/4M3XaGqo59//eoF//+uF9PLRo0ezatUqDMtCQenyRr07Nm7cyP/7f/+PZ599NmeZoiiceOKJPPHEEzniSghBXLgxFBcJ3cwxa+grmRb8c+bM4dlnn02/v86YPXs2M2bMSD+++uqrATj33HOznAz/7//+jzlz5nDrrbeSl5fH7373u6woacfP46wf2HV6jz/xBLuMz053zPd78LldJA2T62+8iRee/VvO+B//x2scc8RhOZEtt0tlbGmIFfV27dWwwgCBHo5ZUdBLXDOpa9ZojGos3BBh93Ht+338kxUkdIvdRhZywAS7Vm6nqnxevHg/zn/mK6JJg6d+tBc7Vm7ab6wi38/DZ+3O6Y99zuvzq3l9fnXWcpeqcEkva6GKQ14eOXuPTRpPf7jwwHF8vLSekrCX0/YaxTG7VPXbOl0ikUgGEzstMFtciU4m3CSSTBQhK/NyaGlpoaCggEgkkiNAEokEK1euZOzYsfj9PdcsbG5MS7CwugUhBMOLAiQ0k5aEke5n46CgIBDk+z2dpiIJIWhLGgQ8rm2+qLwmEqe2NZlONVNQ2KEijC91wx3XDJbWtqEAO1TmkdBN1jTEEEB5vp/ioJeWhE4krhNLGnhcKhMrwrjUwTluzvgdQl43RSEvhQFPl/2BBpsxY8Zw1VVXcdVVV3W6XAhB0rCIaQbRpElTzJ4gGFsa6tLquzGqsa4phtulsmNFXvq9Vkfi1LUm8bpVdqjIQ+0iNdaO4Fp43b27sbeEYNmGRlavXs1dHzdw0wm7MWNSOU1RjQPu/i9RzeSJc/fkeztVZG9nCUwhcpwDN4W/f7GaX77yDUJA0Osi5HMT9rk5dc+RvXbYk0gkEknfWHfDJ7zs/oIGtRUFOD9xKBWX7453eM9OwJJti+60QUdk5GorJ5o0EELgdakUB70oIYVhQpDQLQQCt6riVhU002LpxjZaEjqtCT3nBtapVwl6XYwvC2+zPVuMVN0OwLDCAE1RjZaEzsbWJKOK7Ti/I1wKgl58bleqPkewvjlObUuC2pbs9EbNtKhrTVLZjaFAVwghqGlJ0JYwcLvsz8rjUvC47FqjjkK3tiWRHl/I67bFSeqvOqJQnuenJOztUmBsCTRGNWoiCYwO7n8lIV+3PZQKgx42ttiCuCmmURL2kTTM9s+zINDt+1YVpdfCyll/eFGQjRtUkobJRc/M5u6TdmV1Q5SoZjK5Kp9Dd8xtXq2qCioDe/zP3Gc0J+8xAreq9itKKpFIJJK+IUwLLJGuuRKAjikjV5IekeJqK6c11fA0z+9OCyJFUXLSbvyqi5Kwl/q2JNWRBGFf+/ptCT0tGGKaSXNMpyg0ODUZ/cWyRL+iNHVtSSwhCHhc5PvdeF0KLQmd5phGeZ4PBTt9EqAsz5feriTsw7BE2jAh5HOT7/egKrC+OU59m0ZxyIfX3ftohWUJ1jTGaEmkXBw6nLBrWhKUhX2UhH24VIW61iQ1qdevKghQluezhUZUozGmoRkW1ZE4TTGNYYUBwr4t7+dtmBYbmm2rdTX1PQ153YR8rh7HqyoKZWEfGyJx6tqSFIe8VDcnEMJ2BszzD/z7dakKJSEvh+1UwTNfbuD//vl1+jO+/NAJgzoJ4euDMJRIJBLJpiF0ewLQSQsE0DFkrytJj2x5d1+SPtGaujHvbsbfoTzPR1NMI6GbNEbtmX/dtFjTGEcAXpeKZlrUtCTID3i2mBly0xK0JXTiukVCN4nrJrppURzyMrwTx7eu0E2LhlSUwzE8CHjdFAQ8ROI6G1sSuFL7yvd7cupyyvN85PndeFxqOuVLCEFzXCeaNKhpSaSjXz1hWBar62NENQNVUagqsMdjmBa6JYgmDRK6SU1Lgvo2jXy/m8ZY+9gd4edxqZSnHjfF7IhQQjdZUddGYdDLsAJ/l2mebUmD5qiGYQl0y8I0BQIoDXspDfs2STh0Va/VENXS4nZ8ebjPEbaikJfa1gSaYbG+OU5LQkdB6dT5b6BQFIVrj9oRr8/Hnz9eiWZYTCwPc+SUvjU2lkgkEsnWQ1pc0S6uNMVAaDJyJekeKa62YpK6iWZYKIpCqBdRCrdLpSLfz4bmODUtCQoCHtY0xjAsC7/HxbjSEMtq29BSjVu764MjhKApplHfplEa9lIc8nW5bn8RQtAc06luSXTa0LUxquFSlW77+2RS12pHrYLe7ChHRb6fSNyuoVJS6VyZUSsHRVGyrLCd54YV+Fla20ZzzD4WHdfpiG5arEyZK7hUhdEloZyojRCCSFynpsUWEo6wKsvzUd7F2IpDPvL9Hja2JGiIajTHNBRgZCeCTwjB2sZYTm0eQHUkQTRpMqIo0Of6OyEEMc0k4HHlRBYtS6TFbVmer1+piy5VoSTsS/e9AigJezfZ1KMnVFXhxmMmU1UQ4G9frObW46ZsMfVtEolEIhl4HBGlZ4orDCxdRq4k3SPF1VaCECJnZt5JCQx5Xb2OMpWEvDRG7eiVI6RcisLo4qDduLXAz5rGGHWtSYqC3k7T3HTTYl1TPB01W9cUx7Q6FyRayrTAErZBgO2folAY9HRb8B/TDDY0J4hp9nv0ulTCPjd+r4uAx3bJW99sGxm4VLvWqDs0w3ZSBKjIz47K+D0uioJemmIaAkHI5+6VWHUIeN3p7aubE4wrC3UZRWlJ6GxoiqOZlu1iVxLq1DlNURQKg17yAx6aUg6Q+X5Pztg74napDC8Kkuf3sKohSktCT6fgZZJIRf9URWFYoT9dmxfXTTZEErQkdJbVmYwqDhL0utFNi5hmEtcMXKraaV2XJQTrGuM0xzWCXjfjykJZ6zTFNAzLwpuqJ+svJSFvWii7VZXy/IEX9l1x/gFjOb8XNuoSiUQi2boRhoWFhaW0+77JyJWkN0hxtYVjWYLa1gSWsA0YMmlNtNdb9RYllYK2sj6KlopajCgKpJ3yCgIeQl43Uc1gY0siK+rhpMBtaI5jWrbYy/O5aUnoVEfiCERa5FiWoK4tmb4J7sjGlgTleT5Kw750BEAIQVwzaYhqafc4VVEoz0+tl3GjHvK5sYSgOpKgJpLArSpdRs+ShsnqhhhCiLTLWkfK8300x/TUe+j7zXplKvoV1Qxa4joFHfoIJXWT6pRoAbs569jSUI91NKpiR2pKwn0bU57fjVtVMSyLWNIg3CFttCXju5N53II+N0Gvi9WNMTTDYnldFI9LQTOyZ+qaYxqjioPp741pCVY3RGlLCf5Y6vvjRBWFEGnjiZJNTDl0u1TK8nyp/dvCUCKRSCSSgURoVlbUCuzIlay5kvSEFFdbODHdbHevC3jSERUrVZcD5Nw490Se35OuMyoN+7KEgKIoVBX6WVbbRlNMozjkRQhBa9KgNWHXAQEEvC5GFgXxudW002BNJJG2it7QHCeZuiH3e1x4XCqqYouFpGES0+x6osaYRmW+H9MSNEY14hmmDkVBL5UF/i4jXGV5fgxLUNeaZH1THFAoCnqybtzbkgZrGqIYlm2N3VWNls/tYlRJEN20+mUE4XGrlOb5qG1JUB1JkDAsVMU+nk7UTAiBgkJpnpfyPN9mtW5XFIU8v5ummEZLIldcdSfMA143E8rCrGuya5o0wxbHfo8dNWxN6MRTkc/hRbZxxqqGKDHNTIlBO7JU15okz+cm7PfQkjBIGnYaZPEAmKWU5/koCXm3+bYBEolEIhkahG5m1VtBKnIl3QIlPSDF1RZO2NeecrauKc7E8jCqqhDVDKxULx1/HxzqHEYUBSkOGZ0KiWBGmtvyurasZYqiUJ6q+3FESkW+HwXb3W5jhk25x6VSVeCnIJAteJwIWE3Erida0xjL2n9hwENJL2qXwI4YmaagMWb3QNrYolIY9FAY9NqphU0JBIKA18WY4hCebo7VpqSqAZSFfTRFNTTTyjoODnl+D1UF/s1eH+SQnxJXjpBysFP8HHHV+Xt2u1RGlwRtq39sweyIQc2wWNtom3GsaYzhUhVMS+BWFcaUhgh63WmxvLYpzsRyF/WpCYKSkHdAjFIURcHtkjVPEolEItk8WLqFoWRHqTRMGbmS9IgUV1sBVQV+WpP2zH9ta5LKAn975CHDUr0vuFSlW4fBinw/LXEdM1XXkue3TSDCPnen0YLylPtedSSOgh29qMjvPDqjKApFQS/5fg91rUka2pK4XSrFIS9FwdzeTt2hKArDiwK4XQqNUQ091XOqLqPJbmHAw4ii4GY3ILDNKYI0x/RUfRnplMiioDfLLn8wCKdeL2mYJHUzncLnfHcCqYhiVyiK0mlU1OtWGVcWYmNLktrWBKZl91kbUxpKC8dhBQGiSZOkYbIiZd6hpFIcJRKJRCLZ4tE7SQuUkStJL5A5NVsBbpfK8AK7lqmuNUlcM/tVb9UXvG6ViRVhJpbnsVNVHiOLgxQGu0/DKsvzMb4szA4VYYYVBnpMe3OpCpUFfqYML2BSZR5leb5+pXkpikJlQYAdq/IZXRLKipRV5PsZWbz5hZVD0OtmWGGAEUVBRhYHGV0SYnRJiPwO0buO43/llVcGfCwuVSWUMstoyYheOUYk+QEPjz32GCNHjkRVVR544IFe79s+5n7GlYYpC9ufe2ZETlUVRhUHURQlnUpaFOjexEQikUgkki0FS7dy0gJlnytJb5B3OlsJBUEvBQEPArvxbNIwUVAI9UFcnXfeeSiKwsUXX5yz7JJLLkFRFM4777z0cz++8AKCPjeqquJ2uxk1ahQ//elPaWpqytp2zJgx6RvzkM+djpBkoihKp3/PP/98ep1HH32U3XbbjVAoRGFhIdOmTePuu+9OL7/llltQFIWjjjoqZ//33HMPLlXl+JmHM7okxE6VeXzy+gucfMzhFBcXU1RUxGGHHcaXX37Z43ESQnDLLbcwbNgwAoEAhxxyCN9++22P23XGSy+9xJFHHklpaSmKojBv3rycdaqrq5k5c2b68R133MF+++1HMBiksLCwX6+bSCQ477zzOPaQfdl9TClnnHoSYEfS2lJCS2gxLrvsMq699lrWr1/Pj3/8Y6qrqznjjDOYNGkSqqpy1VVXdfs6Yb+bqsJAp+mWAa+LqoJ2F8fSfhiFSCQSiUQyFAjNzGogDHbkypKRK0kPSHG1FWFHg+w0L7DrYPrqlDZy5Eief/554vF4+rlEIsFzzz3HqFGjctY/6qijqK6uZtWqVTz++OO89tprXHLJJf0a/1NPPUV1dXXW3wknnADAE088wdVXX80VV1zB119/zaeffso111xDW1t2zVdVVRXvv/8+69aty9l35vjdLpVPP/6I008/nffff59Zs2YxatQojjjiCNavX9/tOO+55x7uu+8+/vjHP/LVV19RWVnJ4YcfTmtra6/fq6bZznjRaJT999+f3/zmN12uW1lZic/XLjw0TeOUU07hpz/9aa9fryOmaRIIBLjs8svZ54BDMC2Rdg50Uj3rqtej6zrHHHMMVVVVBINBkskkZWVl3Hjjjey22279fn2HkpBtSjK8MDBotWYSiUQikWwqopO0wKSMXEl6gay52oqwDSICrGuyDSD6kxK4++67s2LFCl566SXOPPNMwI6ujBw5knHjxuWs7/P5qKysBGDEiBGcdtppPP300/0af2FhYXpfHXnttdc49dRTueCCC9LPTZkyJWe98vJy9thjD5555hluvPFGAD777DPq6+s55ZRTWLhwYXrdv//971nb/vnPf+Zf//oX7733Huecc06n4xBC8MADD3DjjTdy4oknAvDMM89QUVHBs88+y09+8pNOtzvvvPNobm5mn3324Q9/+ANer5dVq1Zx9tlnA7Bq1aoujood1Xv55ZfTQvPWW28F6PI4f/DBB8yYMYPXX3+dG264gcWLF7Pbbrvx+OOPs8suuwAQCoV4+OGHAXj3/Y9obm6mLWEQS/XnePOl5/i/y+0IpvO5r1y5kjFjxvD73/8egCeffLLLMfcW2wCl+x5kEolEIpFsaYjO0gJlzZWkF8jI1QAghEDTtEH5C7kFAZfAMgwCLqcpb9/40Y9+xFNPPZV+/OSTT3L++ef3uN2KFSt488038Xg2zVWvMyorK/n8889ZvXp1j+uef/75WcLjySef5Mwzz8Tr7d7iOxaLoes6xcXFXa6zcuVKampqOOKII9LP+Xw+Dj74YD777LNu9//ee+/x3Xff8c477/D666/3+D42lV/84hf89re/5auvvqK8vJzjjjsOXddz1nPqnFoSRrpW74wzfsi7774LwJdffkl1dTUjR47c7GOWSCQSiWRrQOgmeiot0LnvkX2uJL1BRq4GAF3XufPOO4fktW+44YYeRUVHzj77bK6//npWrVqFoih8+umnPP/883zwwQc5677++uuEw2FM0ySRsO3F77vvvn6N9fTTT8flyk4Nmz9/PuPGjePmm2/mxBNPZMyYMeywww5Mnz6do48+mpNPPhm1Q+rjsccey8UXX8xHH33EHnvswT/+8Q8++eSTHiMt1113HcOHD+ewww7rcp2amhoAKioqsp6vqKjoUfiFQiEef/zxPn8e/eXmm2/m8MMPB+zo2ogRI3j55Zc59dRTs9bzpCzLW+K2i6GiKJQV5lNSUgJAWVlZlxFFiUQikUi2RzIjV3l5eTQ2NtpugZqMXEm6R4qr7ZDS0lKOOeYYnnnmGYQQHHPMMZSWlna67owZM3j44YeJxWI8/vjjLFmyhMsvv7zLfV988cX87W9/Sz/OrJm6//77c4SNEy2pqqpi1qxZfPPNN3z44Yd89tlnnHvuuTz++OO8+eabWQLL4/Fw1lln8dRTT7FixQp22GEHdt11127f8z333MNzzz3HBx98gN9vp6n9/e9/z0rz+89//pMWfx2d/URKlHTHLrvsMmjCCmD69Onp/xcXFzNp0iS+++67nPXcLhVFabeFD3ldA9JrSiKRSCSSbZVOxRUGQpeRK0n3SHE1AHg8Hm644YYhe+3+cP7553PZZZcB8Kc//anL9UKhEBMmTADgwQcfZMaMGdx66638+te/7nT92267jZ///OedLqusrEzvqyt23nlndt55Zy699FI++eQTDjzwQD788ENmzJiRM/599tmHb775pseUxt/+9rfceeedvPvuu1ki7LjjjmOfffZJPx4+fDjV1dWAHcGqqqpKL6utrc2JZnUkFAp1u3ww6EoAZhqfdNffTCKRSCQSie0W6KQF5ufnA7YVu5U0uttMIpHiaiBQFGVQIxYDwVFHHZV2tDvyyCN7vd3NN9/MzJkz+elPf8qwYcNylpeXl1NeXj4gY5w8eTJgO+51ZMqUKUyZMoX58+dzxhlndLmPe++9l9tvv5233nqLPffcM2tZXl4eeXl5Wc+NHTuWyspK3nnnHaZNmwbY7n0ffvhhli38lsDnn3+edkhsampiyZIl7Ljjjp2u61YVRqDSgCB/M/VGk0gkEolkW0EY2ZErAKFAspPaZokkE3mXtZ3icrnSKWQd66C645BDDmHKlCnceeed/PGPf+zTazY3N6drmhzy8vIIhUJpsXbooYcyYsQIqquruf322ykrK8tKf8vkv//9L7qud9kL6p577uGmm27i2WefZcyYMenXDofDhMPhTrdRFIWrrrqKO++8k4kTJzJx4kTuvPNOgsFgtyKuKxobG1mzZg0bNmwAYPHixYAdxeuqzmnNmjXp7UzTTPfGmjBhQta4b7vtNkpKSqioqODGG2+ktLQ07TgIsHDhQjRNo7GxkWhLhOXfLiChKkwcsV+3Y3Zer62tjbq6OubNm4fX602LXYlEIpFItnWEZqX7XAWDQRRFsQ3M9OQQj0yypSPF1XaME+buK1dffTU/+tGPuPbaa/vkMPejH/0o57m77rqL6667jsMOO4wnn3yShx9+mIaGBkpLS5k+fTrvvfde2nihIz2l4T300ENomsbJJ5+c9fzNN9/MLbfc0uV211xzDfF4nEsuuYSmpib22Wcf3n777ZwoV2949dVXs973D3/4wx7H8Ktf/Ypnnnkm/diJoL3//vsccsgh6ed/85vfcOWVV7J06VJ22203Xn311awI6tFHH51lwrH3UQcA9Ogw6bwewJw5c3j22WcZPXp0t3byEolEIpFsSwjdTPe58nq9+H1+4ok4mqUjTIHikrXLks5RRH+8vLdxWlpaKCgoIBKJ5AiQRCLBypUrGTt2bNoYQSIZTJw+V01NTV1G7TpiNCex2jQUnwtPWXDzDnAbQv7eJRKJZPuk9qF5vFr9MetcDRx//PF8+OGHNDc38/3kHky7eSaqTLHfruhOG3RE9rmSSLYHnDkUOZUikUgkEkmPCL09LdDr9aYn2Gw7dukYKOkaKa4kku2BtLiS6koikUgkkp4QupWdFuiIKwyELntdSbpGxjQlkq2MQw45pMe6qY4IZ5JNaiuJRCKRSHpEaGbaLdDj8eDz+QA7cmXJyJWkG2TkSiLZHkiJMRm4kkgkEomkZ4RhpftcPbf0OQzV7m+lYcrIlaRbpLiSSLYHHFEl1ZVEIpFIJD1iae19rl5b9RoroisAp+ZKiitJ10hxJZFsD0hDC4lEIpFIeoWwBGQ0ETZUg6Ri97fS0KWhhaRbpLiSSLYHMiJXsvuCRCKRSCRdIwwLCwtLsa+XhpIhrhSZFijpHimuJJLtgCxBJbWVRCKRSCRdkukUCB0jV9KKXdI9UlxJJNsDmdcBGbmSSCQSiaRLhN7uFCgQCEUQIwaALmuuJD0gxZVkq+WQQw7hqquuGuphbBY++OADFEWhubl5k/clhMgWVIOorW655RamTp06eC+YQU1NDYcffjihUIjCwsIhGYNEIpFItj6E3u4UaKr2vzFhiysNA0uXkStJ10hxtR1x3nnnoShKzt9RRx2Vtd7cuXM55ZRTqKiowO/3s8MOO3DRRRexZMmSLvftiIHO/mpqajZp3JsiNH7yk58wfvx4AoEAZWVlHH/88SxatKhX28bjcYqKiiguLiYej/f5tbujP8d4oBiomqtEIsF5553HLrvsgtvt5oQTTshZ5+c//znvvfde+vG3337LSSedxJgxY1AUhQceeKBfr/3SSy9x5JFHUlpaiqIozJs3L2ed+++/n+rqaubNm5c+ro899hiHHHII+fn5AyZeJRKJRLJtITKcAg3FtmCPEgWkW6CkZ6S42s446qijqK6uzvp77rnn0stff/119t13X5LJJH//+9/57rvv+Otf/0pBQQE33XRTj/tfvHhxzv7Ly8v7PV5d1/u9LcAee+zBU089xXfffcdbb72FEIIjjjgC0+z5xPjiiy+y8847M3nyZF566aVNGgeApmnAph/jPmN1EFMDoK10Xcc0TQKBAFdccQWHHXZYp+uFw2FKSkrSj2OxGOPGjeM3v/kNlZWV/X79aDTK/vvvz29+85su11m+fDl77LEHEydOTH8HY7EYRx11FDfccEO/X1sikUgk2zaZaYG6Yt+HtFqtQKrmSkauJN0hJDlEIhEBiEgkkrMsHo+LhQsXing8PgQj2zTOPfdccfzxx3e5PBqNitLSUnHCCSd0urypqanLbd9//30BdLvOl19+KQ477DBRUlIi8vPzxUEHHSTmzJmTtQ4gHn74YXHccceJYDAozjnnHIEtB9J/5557rhBCiIMPPlhcfvnl4he/+IUoKioSFRUV4uabb+7y9YUQ4uuvvxaAWLZsWbfrCSHEIYccIh555BHx8MMPixkzZuQs//bbb8XMmTNFKBQS5eXl4qyzzhJ1dXXp5QcffLC49NJLxc9+9jNRUlIiDjrooF4fY+d4vvvuu2KPPfYQgUBATJ8+XSxatChr/VdffVXsvvvuwufzibFjx4pbbrlF6LqefTz/9JCY+b0jRcAfEJMm7CA+ef8jsXTpUnHwwQeLYDAo9t13326Px8qVKwUgXnjhBXHwwQcLn88nnnzyyax1uvpu3XzzzWK33XbrdL+jR48W999/f87zznG79NJLRUFBgSguLhY33nijsCyry7HNnTs3Z9+dfWccevN9FWLr/r1LJBKJpH/ElzSKz65/Wdx8883iyjuuFDs/vbPY8/E9xc033yxu+dXNouHFxUM9RMkg05026IiMXA0AQghMMzYkf2IAzQneeust6uvrueaaazpdvql1K62trZx77rl8/PHHfP7550ycOJGjjz6a1tbWrPVuvvlmjj/+eBYsWMBtt93Giy++CLRHxX7/+9+n133mmWcIhUJ88cUX3HPPPdx222288847nb5+NBrlqaeeYuzYsYwcObLbsS5fvpxZs2Zx6qmncuqpp/LZZ5+xYsWK9PLq6moOPvhgpk6dyuzZs3nzzTfZuHEjp556atZ+nnnmGdxuN59++imPPvpon4/xjTfeyO9+9ztmz56N2+3m/PPPTy976623OOuss7jiiitYuHAhjz76KE8//TR33HFH1j5uv/MOzjrpdL586xMmjd+Bs847h5/85Cdcf/31zJ49G4DLLrus2+MBcO2113LFFVfw3XffceSRR/a4/qbgHLcvvviCBx98kPvvv5/HH3+819t/9dVXHHXUUZx66qk53xmJRCKRSLpD6LlpgbpqR7CEAlpCG7KxSbZ83EM9gG0By4rzwYe7DMlrH3LwAlyuYK/Xf/311wmHw1nPXXvttdx0000sXboUgB133LHf4xkxYkTW4+HDh7N48WIADj300Kxljz76KEVFRXz44Ycce+yx6efPOOOMLBGxcuVKAMrLy3PEx6677srNN98MwMSJE/njH//Ie++9x+GHH55e56GHHuKaa64hGo2y44478s477+D1ert9H08++SQzZ86kqKgIsNMpn3zySW6//XYAHn74YXbffXfuvPPOrG1GjhzJkiVL2GGHHQCYMGEC99xzT3qdV199Fej9Mb7jjjs4+OCDAbjuuus45phjSCQS+P1+7rjjDq677jrOPfdcAMaNG8evf/1rrrnmmvQxATjvnHM5+fsnAvDzS67ioOMP46Zf3ZQWSFdeeSU/+tGPehzLVVddxYknntircW8qI0eO5P7770dRFCZNmsSCBQu4//77ueiii3q1fVlZGT6fj0AgsEnphxKJRCLZ/shMCzRUW1yZiomCgkCQ1BJDOTzJFo6MXG1nzJgxg3nz5mX9XXrppUDvjQ6mTJlCOBwmHA4zc+bMrGUff/xx1r7feuut9LLa2louvvhidthhBwoKCigoKKCtrY01a9Zk7WPPPffs9fvZddddsx5XVVVRW1ub9dyZZ57J3Llz+fDDD5k4cSKnnnoqiYR9Ypw5c2b6vUyZMgUA0zR55plnOOuss9L7OOuss3jmmWfStVpz5szh/fffT28bDofTgmn58uVdvpe+Rhoz319VVRVA+v3NmTOH2267LWsMF110EdXV1cRisfR2u+zcLvzLS+3ao112aX+uoqKCRCJBS0tLt2Ppy+eyqey7774oipJ+PH36dJYuXdqrWjmJRCKRSDaFLLfA1L8o4PV4AIgnkkM1NMlWgIxcDQCqGuCQgxcM2Wv3hVAoxIQJEzpd5kRbFi1axPTp07vcxxtvvJE2mggEsl9/7NixXaYPnnfeedTV1fHAAw8wevRofD4f06dPTxs9ZI6xt3hSJzoHRVGwrOxCU0fITZw4kX333ZeioiJefvllTj/9dB5//PG0E6Czr7feeov169dz2mmnZe3HNE3efvttZs6ciWVZfP/73+fuu+/OGZMjgjp7L709xp29P0dsOO/PsixuvfXWTqNJfr+/fR/u3H10t9+u6MvnIpFIJBLJ1kpWWmAqcgXgdrtJ6hpJXYorSddIcTUAKIrSp9S8LZUjjjiC0tJS7rnnHl5++eWc5c3NzRQWFjJ69Oh+7f/jjz/moYce4uijjwZg7dq11NfX97idk8I3UFELIQTJpH1iHD58eM7yJ554gh/+8IfceOONWc//5je/4YknnmDmzJnsvvvuvPjii4wZMwa3u/c/o94e496w++67s3jx4i7FcpqtsGnw559/nvN44sSJuFyuIRqRRCKRSLYXhNZJ5Apwu+1rUFKTNVeSrpHiajsjmUzm9J1yu92UlpYSCoV4/PHHOeWUUzjuuOO44oormDBhAvX19fzjH/9gzZo1PP/8893uv7a2Np1y51BSUoLH42HChAn89a9/Zc8996SlpYVf/OIXOZGvzhg9ejSKovD6669z9NFHEwgEcurGOmPFihW88MILHHHEEZSVlbF+/XruvvtuAoFAWuB1pK6ujtdee41XX32VnXfeOWvZueeeyzHHHENdXR2XXnopf/7znzn99NP5xS9+QWlpKcuWLeP555/nz3/+c5ciYCCOscOvfvUrjj32WEaOHMkpp5yCqqrMnz+fBQsWpGvDgM3aNHjhwoVomkZjYyOtra3pflNdNQ7WNI2FCxem/79+/XrmzZtHOBzOEolr167l6quv5ic/+Qn/+9//+MMf/sDvfve79PLGxkbWrFnDhg0bANJ1fZWVld3WWNXU1FBTU8OyZcsAWLBgAXl5eYwaNYri4uJ+HweJRCKRbDtk1Vwp7ZEr1W1X02iGjFxJukbWXG1nvPnmm1RVVWX9HXDAAenlxx9/PJ999hkej4czzjiDHXfckdNPP51IJJJ9w94FkyZNytn/nDlzANvwoampiWnTpnH22WdzxRVX9KoH1vDhw7n11lu57rrrqKio6JWzHdipcR9//DFHH300EyZM4NRTTyUUCvHZZ591+bp/+ctfCIVCfO9738tZNmPGDPLy8vjrX//KsGHD+PTTTzFNkyOPPJKdd96ZK6+8koKCAlS1+5/Vph5jhyOPPJLXX3+dd955h7322ot9992X++67LzeyuBkjV0cffTTTpk3jtdde44MPPmDatGlMmzaty/U3bNiQXqe6uprf/va3TJs2jQsvvDBrvXPOOYd4PM7ee+/NpZdeyuWXX86Pf/zj9PJXX32VadOmccwxxwDwwx/+kGnTpvHII490O95HHnmEadOmpY0xDjroIKZNm5Y2GpFIJBKJpKu0QMVtp9EnN7EHp2TbRhED6eW9jdDS0kJBQQGRSIT8/PysZYlEgpUrVzJ27NisuhaJZEvFbNUwI+2zbGrIg7toy/3uHnLIIUydOpUHHnhgqIcif+8SiUSyHdL86nL+31fvsNRVw4KiBSwpXALAhYnzaaqOsLcykaNvPnOIRykZTLrTBh2RkSuJZFunw/yJnE+RSCQSiaRrLM1Ez4hclQXK7Oc9tvGTZsrIlaRrpLiSSLZxHC0lUsVXPbkCSiQSiUSyPSOM7CbCw8O2+ZXuslMEk5aOsOREpaRzpKGFRLKtk7oAmIqFW7i2+MjVBx98MNRDkEgkEsl2TJZboGoyPG848+rmobltl0BNMRGGheKVDraSXGTkSiLZ1klpKTM1C4ecbZNIJBKJpEtst0A7y8NQDIaFhgGQUO36ZQ0Docmm9pLOkeJKItnWEe2RK/uhFFcSiUQikXRFplsgKlQEKwBIqHarGV0xEJpMsZd0jhRX/UTWrUi2FhwtlW6EKLVVr5G/c4lEItn+EHp7WqDf5yfkDQEQJw6kIle6jFxJOkfWXPURr9eLqqps2LCBsrIyvF4viqIM9bAkki7RtQTCsIhbGh7Lg2VZKB0aPUuyEUKgaRp1dXWoqorX6x3qIUkkEolkkMhsIhwOhAl7wgDERAwATUauJN0gxVUfUVWVsWPHUl1dzYYNG4Z6OBJJj5itGrphkFA0vLjx4MITDQz1sLYKgsEgo0aN6rExtEQikUi2HYRupa3YQ/4QIY8duYoSBWTkStI9fRZXuq4zadIkXn/9dSZPnrw5xrTF4/V6GTVqFIZhYJryxyXZsql76hsWNC9loWc9w81idrfGMvpn2+dvty+4XC7cbreMTEskEsl2hqEZCMXOoc8P5BP0BAFotVoB0DEwk/L+T9I5fRZXHo+HZDI5YDccDz30EPfeey/V1dVMmTKFBx54gAMPPLDTdV966SUefvhh5s2bRzKZZMqUKdxyyy0ceeSRWeu9+OKL3HTTTSxfvpzx48dzxx138IMf/GBAxuugKAoejwePxzOg+5VIBhp3xCIejdPmbiNm+vDrKj6fT4oGiUQikUg6Qdf1tCtBQbCAkNuOXLVYLQAIBZLxBMGhGqBki6ZfuS6XX345d999N4ZhbNKLv/DCC1x11VXceOONzJ07lwMPPJCZM2eyZs2aTtf/6KOPOPzww3njjTeYM2cOM2bM4Pvf/z5z585NrzNr1ixOO+00zj77bL7++mvOPvtsTj31VL744otNGqtEsrUiMjvNY+FCBVO6WkgkEolE0hEhBLph97OysCgKFqXTAtvMNlTsiclkTNYuSzqnXzVXX3zxBe+99x5vv/02u+yyC6FQKGv5Sy+91Kv93HfffVxwwQVceOGFADzwwAO89dZbPPzww9x111056z/wwANZj++8807+/e9/89prrzFt2rT0OocffjjXX389ANdffz0ffvghDzzwAM8991xf36pEstVjaRaG4nSat/8VmonilnVEEolEIpFkYQp0kWogrJgU+grT4srCwqt6SFgaiXh8KEcp2YLpl7gqLCzkpJNO2qQX1jSNOXPmcN1112U9f8QRR/DZZ5/1ah+WZdHa2kpxcXH6uVmzZvGzn/0sa70jjzwyR5hlkkwmSSaT6cctLS29en2JZEtHWAIMC91jXyh07GhzLBEjHCwYyqFJJBKJRLLFkdnjylANCn2FBNwBFBQEAo8rJa4SyR72JNle6Ze4euqppzb5hevr6zFNk4qKiqznKyoqqKmp6dU+fve73xGNRjn11FPTz9XU1PR5n3fddRe33nprH0YvkWwdOG5Gjqhy+nZE2poIF0txJZFIJBJJJplOgYZiUOQvQlEUQp4QbXobXtW+dZaRK0lX9DsvyDAM3n33XR599FFaW233lA0bNtDW1tan/XQsqhdC9KrQ/rnnnuOWW27hhRdeoLy8fJP2ef311xOJRNJ/a9eu7cM7kEi2XJw+HI6ocmbjWtoiQzYmiUQikUi2VIRutqfSqwYFPnsi0nEMdLtdACSSMnIl6Zx+Ra5Wr17NUUcdxZo1a0gmkxx++OHk5eVxzz33kEgkeOSRR3rcR2lpKS6XKyeiVFtbmxN56sgLL7zABRdcwD//+U8OO+ywrGWVlZV93qfP58Pn8/U4Zolka0No9gVCU+zIlYEtttpiMvVVIpFIJJKOZKYFmopJka8IIF135XbZ4iqpSXEl6Zx+Ra6uvPJK9txzT5qamggE2puR/uAHP+C9997r1T68Xi977LEH77zzTtbz77zzDvvtt1+X2z333HOcd955PPvssxxzzDE5y6dPn56zz7fffrvbfUok2yqWE7lKpQWaWAgE0WjfIswSiUQikWwPWJqJnpqINFSDQn8hQNqOXXXEVVIbkvFJtnz6Fbn65JNP+PTTT/F6vVnPjx49mvXr1/d6P1dffTVnn302e+65J9OnT+exxx5jzZo1XHzxxYCdrrd+/Xr+8pe/ALawOuecc/j973/Pvvvum45QBQIBCgrssO2VV17JQQcdxN13383xxx/Pv//9b959910++eST/rxViWSrxolcOfnjKLbAisaluJJIJBKJpCNCb3fYtRSLPE8e0B65Ut0pK3ZDRq4kndOvyJVlWZhmbmfqdevWkZeX1+v9nHbaaTzwwAPcdtttTJ06lY8++og33niD0aNHA1BdXZ3V8+rRRx/FMAwuvfRSqqqq0n9XXnllep399tuP559/nqeeeopdd92Vp59+mhdeeIF99tmnP29VItmqccSVoVjp5wxMkrIQVyKRSCSSHDLTAlWPmq7Zd8QVLrtPpKbLyJWkc/oVuTr88MN54IEHeOyxxwDbQKKtrY2bb76Zo48+uk/7uuSSS7jkkks6Xfb0009nPf7ggw96tc+TTz6Zk08+uU/jkEi2RYRmpVMBHXRMkgnZ/FAikUgkko4I3UybQLlS5hXQLq5ESlwlDSmuJJ3TL3F1//33M2PGDCZPnkwikeCMM85g6dKllJaWyka9EskWhNDN9pTAFIZiosn+HBKJRCKR5JAZufJ4PennHbdAw20vS5pSXEk6p1/iatiwYcybN4/nnnuO//3vf1iWxQUXXMCZZ56ZZXAhkUiGFrsw18h6zsDC0ORFQSKRSCSSjmT2ufJ7/ennnciV7tIB0Ex98Acn2Srol7gC20Ti/PPP5/zzzx/I8UgkkgFEaO2FuQ4GJmbS6GILiUQikUi2XzKvm52JKy0lrpKWFFeSzum3uAJYuHAha9asQeswC37cccdt0qAkEsnA0FVaoNCtLraQSCQSiWT7RRhmOi0w4G/PxnLEVcTbCrjQLB1hWiiufnnDSbZh+iWuVqxYwQ9+8AMWLFiAoigIYRf3OY4qnTkJSiSSwUdoVrow18HABF1gWAZudZPmVyQSiUQi2aYQWnvNVcgXSj/viKt6bxOllKJhYDQk8JQHh2Scki2XfjcRHjt2LBs3biQYDPLtt9/y0Ucfseeee/ba0U8ikWx+hJYbudKx8AkvzcnmoRmURCKRSCRbKEJvn5QMB8Pp5x1xFSMGgI6BvjE6+AOUbPH0S1zNmjWL2267jbKyMlRVRVVVDjjgAO666y6uuOKKgR6jRCLpJ0Kzcg0tFBO/5aU50Tw0g5JIJBKJZAtF6O1pgfmB/PTzIbctrlqsFns9BWLVLYM/QMkWT7/ElWmahMO2mi8tLWXDhg0AjB49msWLFw/c6CQSySZhaWanaYE+y0tTsmmIRiWRSCRbL/rGKEaDbMS+rZLpFpgprhwr9jazDQW7DCZaExn8AUq2ePpVcLHzzjszf/58xo0bxz777MM999yD1+vlscceY9y4cQM9RolE0k+E1j4D52BgR66aElJcSSQSSV+wkga1f5yH4nVRdf3eKG5pZjBQaOvbUINu3EX+nlfejAjdwlBs06eiUFH6+XRaoBHD5/WS0JLE61uHZIySLZt+nRV++ctfYln2F+/2229n9erVHHjggbzxxhs8+OCDAzpAiUTSfzJzxx10xcQnpLiSSCSSvmK2aAjdworqJFfLlLCBwogkqX1oHnWPL0ibpA0VpmakJyWLQ8Xp5x1xFdWj+Hw+AGKNbQhraMcr2fLoV+TqyCOPTP9/3LhxLFy4kMbGRoqKitKOgRKJZOgRnTYRNvFbPhqT9UM0KolEItk6seLt59Pkkib84wuHbjDbEEZtDEyB2ZDA2BjDUxnqeaPNhJ7U0mmBnUWuNEvDF/BDawuapWM2JnCXBjrdl2T7ZMDi2cXFxVJYSSRbGJlugZZqR5sNLHyWRxpaSCQSSR/JFFeJJTL6P1CYkWT6/4mlQ3tck4kkQrGjUT6vL/28U3MF4PF5ANAw0GtjgztAyRZPn8XVV199xZlnnsnYsWMJBAIEg0HGjh3LmWeeyezZszfHGCUSST+xMjrNW96UuFJM/DItUCKRSPqMyBBXenUUs1UbwtFsO5iR9uOYWNo8dAMBtGS70PN6ven/e1QPPpcttlSPffusKVJcSXLpk7h65ZVX2H///WlsbOTKK6/kySef5PHHH+fKK6+kqamJ/fffn3//+9+ba6wSiaSPCM1EcwwtUtcI2y3QR2OycegGJpFIJFshmZErsKNXuqmzumX1EI1o28BsaRc02soIQreGbixxHQChCFwuV9YyJzXQEVc6JsZGKa4k2fSp5uqXv/wlt912G9ddd13Osquuuoq7776bG264geOPP37ABiiRSPqP3WnevhlQfHbarp6KXEXizUM4MolEItn6sGIdxNXSJu7X/8wLi1/gkcMeYf/h+w/RyLZuMiNXQrdIrm7BP6Fw0MchhMDSTHsyspPwQ9AdpJFGVLeMXEm6pk+Rq2XLlnHiiSd2ufyEE05g+fLlmzwoiUSy6QghEHp7nyuXz56BM7FnBNtibUM2NolEItkacSJX3lF5ACSXNvHlhi8A+Lbh2yEb19aOU3Ol5tm1TMllQ5O2LhImprCvkYo710fAiVwJt12TpWFg1MakY6Akiz6Jq/Hjx/PKK690ufzf//637HMlkWwpGBYI0oYWLr8trpzH8UR0yC1vJRKJZGvCEVf+HYpQfC6sqIGn1j6PbmjbMJRD26px0gKD0yqAoau7sqJ6+hqpdtLDzBFXlssWYLpqIHQLszmZs65k+6VPaYG33XYbP/zhD/nwww854ogjqKioQFEUampqeOedd3j77bd5/vnnN9dYJRJJH7C01Mk/FbnyBDyYmGmDC5ehEtWjhL3hIRujRCKRbE044koNe/BNKCTxbQO7R3diSWA1NdGaIR7d1ondN8w+rqE9ymn7aB36hjbMqI4r5BnUsZgxPX2NdHtyb5EdcWW67HV0nwAN9NoY7uKhbX4s2XLoU+TqpJNO4qOPPiIvL4/77ruPc889l3POOYf77ruPcDjMhx9+2G3aoEQiGTyEnjr5p2bhfAHb5cjpPC8dAyUSiaRvpMVVwI1/B7sH0u5tOwGwISojV/3BiVopHhV3eRBPZRAEJJc1D/pYrJiRvmZ6PLnCzhFXhmp/DwyPHbU0ZN2VJIM+NxGePn0606dP3xxjkUgkA4jQLAQibWjhD/qJEEl3nvdZXpqSTYxk5FAOUyKRSLYaRFpcefCOzAdgcnwcQdNPdVs1QgjZ87OPOGYWrnwviqLgm1CEXhMjsbSJ4G5lgzoWK9oeucq0YXdINxJW7DFramoSUzoGSjIYsCbCEolky0JoJiYWInWdDwTtDvIGJgKB3/LJyJVEIpH0gczIlbvYT12gGRcupkYnkTATNCebh3aAWyFO5MpVYGdX+CcWAnbkarDrgq2Y3j4B6fPlLHcaCScVe8xaavJSRq4kmfRJXC1ZsiTri/7JJ59wwgknMGXKFA477DDZ40oi2YIQmplObwAIhUPp/xtY+ISHxoTsdSWRSCS9xYobNCtRWvQolrD4IjgfgD1iUwCZGtgfHKdAR1x5xxaAS8FsTmLUxwd1LHZaoJ067/PmiisncpUWV5bdE0uvjUmDKEmaPomrnXbaibq6OgA++OADDj74YCzL4swzz6SwsJATTzyRt956a7MMVCKR9A1Ls9JmFoZiEPQF08sMTPyWT86ySiQSSS8RpoWmabzi/ZKnX/wrayJr+DK4AIB9Y7uCgJo2aWrRV5y0wKg/wcboRlSvC99oO+UyOciugZlpgQFfIGd5yG2Lqxh2pCqpJUFVEEkTs0XLWV+yfdIncZWpym+//XYuvvhiXn31VW644Qb+9a9/cc0113DnnXcO+CAlEknfsSNXqZQF1cDv8eN222WWhmLaNVcyLVAikUh6hRU3iCtJDMWiLRpl/pr5zA8uxVBMipP5DNfKZeSqHziRqydWPcOFb18IgG+ibRaSWDq41ygzIy2wU3HlTYkrYYsrwzBQSuzaLEPWXUlS9LvmauHChZxzzjlZz5199tl8+61soieRbAkIzUpfJAzFwO/ypwt0DUx8wja0kEgkEknPWHEjK9V66bqlJFWN2qIWACYlxsheV/3AaNEwMNFbfBQvLyamx9rrrlZEEKY1aGPR25LpzzjkD+UsdyJXUSuafk6U2q6Cuqy7kqTos7hqbW2lpaWFQCCQU+zn9XqJxwc3P1YikXSO0M32tEDVwO/2p61ldUz8MnIlkUgkvcYWV0b6cU2tnQIoyuyMgJHJStnrqh+YkSQNSise08eotlHUxerwDAujBt2IpIm+IdrzTgZqLFGt+7TAVM1V1Iymr6dmUSojRIorSYo+i6sddtiBoqIiVq5cyZw5c7KWffvttwwfPnzABieRSPpPpqGFE7lyLgaGYsm0QIlEIukDIm6kJ6wAok32TX9eZTEAI7VKmRbYR4QpsFo1oimDCBcu1tavRVEV3BWpnlKDaGohMvpcdWbF7rgFtult6QCDVeACpB27pJ0+9bl6//33sx5XVVVlPV61ahUXXXTRpo9KIpFsMpZmtYsr1cDn8mWlBfplWqBEIpH0GituoGWkBXrj9vm0cvRIYqxgZLJCRq76iNmmgYA2NZF+rrq+GsaDu8SPtjKC0TA44koIAXELw9VzE+GYHsPn89HW1oYRVvHQ7hgo+5xJ+iSuDj744G6XX3nllZs0GIlEMnAIzURXUoYWSnZaoIE0tJBIJJK+YMWN9DkVIE/PY3hoOPnDSomxgmFaOZF4M3EjTsCdm1ImycUxs2hwtaSfq2+sB8BdmurN2JDI3XAzIJImigWGu+cmwlEjmo5cmX4Bih3ZtNp0XHm520m2L2QTYYlkG0VoZruhRYeaK0Oxrdjb9DY0U9rHSiQSSU90NLRwCRc7BXbCVeBF8aq4cVGplVIdrR7CUW5dODbsEbW9rirSHAHsyBUwaJErK2r3rHIaA3cnrmJ6DL/fHl/S0HAVpcY6yH25JFsmfRJXb7/9NobRPmvz7LPPMnXqVEKhEBMmTODBBx8c8AFKJJL+ITL7XKm5boF+Yc+6yV5XEolE0jMdDS0ARimjUBQFd5ldizNKq5K9rvqA3mzXKUWV9uhUrMV+zl3iRK4GSVzF7M82odiCzxFPmTjiSiBwe+3kr2Qy2S4EGwcnyibZsumTuJo5cyaNjY0AvPjii5xzzjkcdNBB/PnPf+aEE07gmmuu4bnnntssA5VIJH0jq8+VYuBz+zLcAi3Cin0zIFMDJRKJpGesDoYWAIVGIQCeMlsIjEhWSFOLPlBTsx4AjXa7dT0VQXLElRU1sOJG7sYDjBlzIlf2Z9yZuPK7/KiKfeuseux/E4kE7mIpriTt9KnmKrOJ8P3338+NN97IrbfeCsAZZ5xBZWUl999/P6effvrAjlIikfQZS283tDBVE4/qyUoLDGOLq8ZE45CNUSKRSLYWMiNXhmLgFm7cMfs2yolcjdQqZFpgH2iqqydIAZmdrJSEbQih+lyoeR6sVh2jIY53RN5mHYsVM7AQmIo9ms7ElaIohNwhWvVWFLc9zmQymRZX5iBF2SRbNv2uuVq6dCnHH3981nPHHXccS5Ys2eRBSbZtZI3P4GAbWtjiyrkIZKYFBoQ9KygjVxKJRNIzmVbsjT57UqqtqQ0Ad3lKXCUrqW6T4qq36M1xNIysyXu35sY07eM8mKmBVlRP11tB5+IK2u3YM8WVS0auJBn0WVwtXLiQ+fPnEwgEsKzsrtmWZaV/EBJJZ7y89GX2+fs+vL/m/Z5XlmwSIiNy5VwEMt0CA6maK2nHLpFIJD2TacXuiKv6+npM08RTbouAkVolG9oGJy3QSppo61qzhMnWRJvWRiDuIZbqceX1eTEVExWVxmb7+KbFVf3mFy1WTEdT7NRAXOB2d57c5dRdWW77HtiOXKXGKcWVhH6Iq+9973tMnTqVNWvW8Omnn2Ytmzt3LqNGjRqwwUm2PebWzsUQBrM3zh7qoWzzCM1Md5pX3fZPPTMt0GfZUayGeMPQDFAikUi2IjKt2CPeCKhgmiZNTU24SwIIBUJWgHhz26CMp/mVZdT+cR7JZc2D8noDzeya2ZQYBekGwgX5BcTctpnFmo1rgMF1DMyMXLm8ri7XC3vC9vouW1wlEon0OK02HUuTQYbtnT7VXK1cuTLrcTgcznqs6zrXXnvtpo9Kss0SN+wTpKzz2fzYhhb2Sd7lsS8U7WmBFl7L/vnLyJVEIpH0TKYVu6EaBAoDxBvj1NXVUVpailLkgUYdf7OKaZm41K5v0AcCbY3dG0rfEMU/sWizvtbmYO7q2UwQ+xBVbXGVn5+PHtNBhw31G9iDPTLSAgcjcmWQTIlnjze3gbCDkxZouOx1k8kkqt+NGnRjxQzMxgRqZWizj1ey5dIncTV69Ohul59zzjmbNBjJto8jrmSdz+bH0qx08bUjrtrdAk3chv2c/CwkEomke4QpEEkT3WufU3VVp7ysnNWNq6mtrWWnnXbCVx4m2djEsEQZdfE6KkOVm288hpVOQXMa8W5tLF+zBNiHNo89/ry8PJQWBaIZjYQHOXKVxE4L9Pi6FldOWqChtIsrAFexHyvWhtGQwCPF1XZNr8VVS0tLzyulyM/P79dgJNs+MnI1eAjNRHc6zXvsiFU6cqWYuAy7Dkt+FhKJRNI9ViIlqpzegYrBiKoRrF68mrq6OgA8FSGSi5oYqVVSHa3erOLKaIhDqtTKaN76xNXG6EYSKTOQpM+EpH3v6G32Qh00NzcD4C5N2bG36VgJA9Xfp5hAn7BrruzP2ef3dbmeI660VD+sRMIWue5iP/q6Nll3Jem9uCosLERRlF6tK00tJF3hiKuGhKzz2ZwIU4ApMFLiyml2mGlooVgKLqHKyJVEIpH0gJXqgZSZFji8cjgAtbW1QEavK62CDW0bmFY+bbONx6hrj+RsjZGrrzZ+RUmqR1jcZR/bvLw8Qvm2cHEaCat+N2rIgxXVMRoSeIeHO93fQGDGDJKpbI+AP9DlekG3nRYYV+zPwIlctZtaSDv27Z1ei6v33293d1u1ahXXXXcd5513HtOnTwdg1qxZPPPMM9x1110DP0rJNkNMt0+YjYlGhBC9FuySviF0E4FIz7I6+eOZ4grAZ3ll5EoikUh6wIobCESWSVBVRRUADQ0NmKaZtmMflaxk9mbudaVniqvmrS9SUhOtoVQvBCAq7PHn5eVRWFRIM83pRsJgpwZq0VSvq80kroQQtqFFyi0wGAx2ua4TuUpii6pkMokQor3XlYxcbff0WlwdfPDB6f/fdttt3HfffVnNgo877jh22WUXHnvsMc4999yBHaVkm8GJXBmWQaveSr5XppBuDoRmpgUUgN9rn/Tb0wJTTRItH41aBN3S8ahd55hLJBLJ9ozIMLMA8Pl8FBQU4PF40HWdxsZGSspsU4lSo4i6pm+63V9sbi36xij5R47p1ySjURdL/9+KGgjdRPH03UAjsayZpn8toejkifgnDJ4pRkuyhdJU5Cpq2mIkPz+fcq2cZpohaZukeTwe3CUBtDWtm9XUQmgWmIKk245chQJd10yFvbbAixFDRUUIgaZpsteVJE2/mgjPmjWLPffcM+f5Pffcky+//HKTByXZdnHEFUBjXEZMNhe2mYV9IyAQ+Lx2/nimoQVAAPv55kTz4A9yK0QIgdBl2rNEsr1hOwXaN94WFgFvAFVVKSsrA6Curg414EYLpNIGM8RPZzS/tpzWD9ahrW3t13gy0wIBjIjWr/1Ev6jGbE4S/Wpjv7bvLy1aC6V6ERYWMc1+L3l5eVQUVKCnokeRSAQYHFMLKxUpS6TqqPKCeV2u66QFRs1oWhjbva7axZWwts7eY5KBoV/iauTIkTzyyCM5zz/66KOMHDlykwcl2XbJElcyHW2zITQzq/Da584WV05qS6m7BJCfRW9pfG4RG27/YquscZBIJP3H7nHVXm/lRC8cceXUXVnFdvTI1WR1va+EgRVLGWRs6HtPLCEEuiPeXPbNfX9TA7U1trjT1/VP5PWXSDJCiVFIHA2BXSIQCoUoC5ale111NLXYrOIqVVPnNDTOD3edVeOkBUbNKD6ffW1NJpO4Cn2gKmAKzJb+iV3JtkG/bFfuv/9+TjrpJN566y323XdfAD7//HOWL1/Oiy++OKADlGw7mJZJwmy/AEgjhc1HZo8rQzUIuO2Lk5MWaGIhEJS5S8GUva56S3JFBJE0SSxtIrTn5nMCk0gkWxZZPa4UI32DXV5eDtDuGFgegvVRQhFPl3XFZoa7n74h2vextOmIhAkKeEfloa1swWzu+8282ZJMTxQZDQmsuIEa2HxufJlEkhHK9EJalXYbdlVVKQuUEfVEKdALaGqyr0vpXlf1my/dzhG7TuSqu7RA57OP6TH8fj+JRIJEIoGiKriLfBgNCczGOO7Crh0HJds2/YpcHX300SxZsoTjjz+exsZGGhoaOP7441myZAlHH330QI9Rso2QKaxAOgZuToRmYaRSWAzVwOfKjlyBbWpR4rJz7GWKZs8IS6RnN/ubyiORSLZO7MhV+znVucHuGLnKG1YMQGWilBat8xY2mdbpWnXfxZWTcugq8qeFR38iV07UKv14fd+jaP0lGYsTEP50pCgvz07DKw2UpiNXNfU1QHtaoNWqYWntadlW0qTxn0uIzavd5PE453anibDf7+9yXaeJcFTPjlwBsu5KAvRTXIH9QyguLqa4uJjS0lJKSkpkfytJt2SmBIJMRducdEwL9LvtE77b3T4rqWNS5CoEZOSqN4iEAalMH23d4N2ESCSSoSczcqWreo64chwDgxUFAIxMVlDdhWNgphDSq6N264w+4DgFesoC6eiI2Y+aq2SHSSJ9/eBNGrna7Pfc5rXH7dw/elweLL99oq1rtKOBatCDGrSvXZmmFm2zNhCbs5HGFxaTWN68SeMxUzVXjhFUINC1FXs6LbATceWW4kpCP8XV7NmzGT9+PPfffz+NjY3U19dz//33M378eP73v/8N9Bgl2whxXYqrwcLSray0QL/LPuGrqpqOXpmKRaFq3wjIz6JnzLZ2a2C9OiqNLSSS7QgrbqA52QAZaYGOY6BlWTQ0NKTt2Idp5VRHuhJXGTWbhtXnWiLHzMJdFrTrfACjX5GrltR+bCExmJErX8wWS7GUuHIiVwCekH2NcmquAFxOhC51rIRh0fbZBnuhgMZnF2FsQi2sFbOt9s1UZ+buIlclfrtWuT5en14v3UjYSWHcjM6Gki2ffomrn/3sZxx33HGsWrWKl156iZdffpmVK1dy7LHHctVVVw3wECXbCjEj2z1J3tBvProytIBsx8ACxZ4tlJ9Fz1gZfVewBFo/aiUkEsnWiehoaOGxDS0yHQMbGhpw5XvRXAZuXDRt7DxdLTMtEPpuauGkBbrLArgKnMhV34SFMAV6KgIf3m8YMHgR+aSZJD9pi9BEyvo8U1x1bCQMuY6B8QX1WC0aatiDpyqEFdVp/Pt3CKNrI5HusKI6Bu3bdieuKkIVqIpK0kwiXLYY6xi5kr2u+o4Vi9Hw9NMkFi4c6qFsMv2OXF177bVZKUZut5trrrmG2bNnD9jgJNsWMi1w8LANLdrrA5zIFWQ3Es5T7YuYNBfpmSxxRW69gkQi2XbJtGLPTAsEKCwsBGzrcEVVaMuzb6y1jZ2LFbPJvhFXw/a5uK91V5lpgU7kymzWEKL36YV6TRShWyh+N8HdbHFoNibStUebk5ZkC1NiEwCIq/brZZaVOMfTSBrtoiUjIiSEoPWT9QCEpw+j5KydUPxutDWtNP+/Ff0akxXT0bDHIhBp86fO8KgeKoO2oZGh2t8JWXO1aRgNDaw+70fU/uZu1lx4EWbb1j152S9xlZ+fz5o1a3KeX7t2bdbsg0SSSU7kSpoobDZERp+rzJoryGwkbBJGiqveYnYUV4NsXSyRSIaOjlbsmeLKEQZOXybN6cXb0LlQcdIC/Tva5hd9iVwJ3cJsSqWglQXTkSuhmYi40ev9aGvtlEDvyDBq0IMrFRkajNTASHMTB7fsAUDMlZsWWJpfiqbaz+fYsdfH0Va1oK9vA7dKaN8q3CUBin84CYDorGqic/tucGHFjLSZBR56bOw8LGxH+xLYn0XHyJUV1bGSvf88tme01atZdfoZJObPB8BsbKTxqaeGeFSbRr/E1WmnncYFF1zACy+8wNq1a1m3bh3PP/88F154IaeffvpAj1GyjeBErhxbcGmisPkQupnuZZXpFgiZkSuLIPaFQEYRe8ZK1Vw5M8XSMVAi2X7IjFxl1lyBXXcF7eLKVWafVwORXFtzYQrMFvtGPDDZrt3RN0R7HXUyGuIgQPG7UMMeVK+r3eyhD6YWTuTdO8oWht7hdprjYIgr/etGfMLLumAtrXH79TIjV2WBMqJuO3KRFlcZaYGtH9tRq9Du5bhS9VmBHYvJ+94oe5uXlmL1QWiCLYacyJXi6V5YQbu4imKP06m5Uv1u1FCu+ca2hr5+Pa3/fR9hdl17bCUS3S4HiH/9Nat+eDr6mjV4Royg7P+uBqDhqacwUu0Ntkb6Ja5++9vfcuKJJ3LOOecwZswYRo8ezXnnncfJJ5/M3XffPdBjlGwjOOJqRN4IwI6WmJY0BdgcZEWuMvpcQXvkSsckIKS46i1OWqAz22w2JjDbZKNIiWRbR5gCkczuHdiZuGppsaNBgQpbKBS25vZKMluSIACXgm9CISipKEdr784leoaZhRNdaU8N7P3NfLu4siNG3uH2v5u7mbAQAt/X9nv9ovI7NC03cpUprjr2ujIjGonv7DYu4QOGZ+07/3ujcJcGELpFso/ugVZMT0euXF5Xj+sPD9uv3WLan7kTuQJwFafG2sfUwJa332btTy/BaBi6NjVWIkHLf/5D9U030fTcc1jJ7Fo+YZo0PPU0y485lnWXXMK6Sy/DbMsV5JHXXmfp/gew/KiZxL76Kme5sCya/vlPVp97HmZTE/4pUxjz/HOUXHgh/t12RcRi1D/88GZ7n5ubfokrr9fL73//e5qampg3bx5z586lsbGR+++/P21LKZF0xBFXw0LDUFAQCJqTzUM7qG0Uq6OhRWeRK8XEb9lCq0VrQbc2f6791oyTFuguCbS7a0lLdolkm8dKpGqtOjG0gNzIVeFwu7FwZaIE3cw+rzopga5CH6rXhbvMNnborUGOY2bhKWufMOurqYUZ1THq7euxd4QtajwjBidylVzejLdZIaYmWFVmRya8Xm/WvWNmrysncqUG3Sj+lOgR4J9UhCflzOigqAr+SXZOZmJp3zJjzGi7G6Tb23MjZUdcNZn262SKq/7asdf+7ne0vf8+TX9/tk/bbSpCCKJffsmGX/6SpQccyPqfXU3zP/9Fza23sfzwI2j8y1+wEgmSy5ax6owzqL37btSCifh2OY22jz9j9emno61dC4CVTFJ9yy1s+MUvsKJR9LVrWX3OuWy86zdYqehefME3rPrh6dTc9CtEIkHo4IMY/ZdncJeWoigK5f/3fwA0/eOfaKtWDeqxGCj63ecKIBgMsssuu7DrrrsSDAZ73kCyXeNYsYc8IQp80gJ8c5JjaOHu3NDCY7pRFfs0EElGBn+gWxFWKkqlhj14R9o3JDI1UCLZ9nFSzHQ11edK0Ql5cyNXra2tGIZB6bBKTCxCVoCGuuz6H8cp0J0SRJ5h9n706t6JmnYb9gxxlWFq0RucelF3aSCdVuekBZpNyZz60oEk+rltT//f/C8JpAyVOvZILQuWEfVkpwUqipKOXkFu1MrBNzElrpY09TrV0tJMMKx05Mrj8/S4jZMWWK/X26+XaBdS/RFX2qpV6KttL4OWN9/skznJpiCEoPqmm1hzzrlE/vUiVlsb7mFVFJ1xOu7KSozaWjbeeRfLvncYK39wIomv5+OdfDTB6ZfjHf89fFOOIrl0GatOOZXIa6+z+vQzaH7+BVAUSi7+CYWnnAxC0PjMM6z8wYlsuOFGVp16Kon581FDIcqvvZaRf/oTaqj99xTae2/CBx8MhkHtA78flOMw0GySuJJI+oJjaBFwByj226lVUlxtHnIMLVydGFpggm5R6CsEoCE+dKkIWwNOWqArJMWVRLI9IdLiyrbqNlSDkLv9ZjAYDOJy2VGV1tZW3F4PdT47otG4fmPWvpzUPVeRfU72VtmiRu9l5Ep3bNhL2ye03X1MC+yYEgh2rZBjGqFvpuiVGUkSX2hfZ/5f0UcETPv1OhqhlQXK0pGrxsb2ewSn7spdEbRTKjvBN64AXIotEntZ8+Q4JCYUW5x2Z8Pu4ESuNmr257upkau2jz5K/19bsYLk0qW93nZTaHz6GSL/ehFcLgpOPolRf3mGCe++S+WvfsX4t9+i8tZb8QwbhtnQgNANwkf9DN8OJ6S3D04/Cf/OO2M2N7PhF78gsXAhrsJCRj72KOVXXUXVr3/NyEcfwV1WhrZyJZGXXgIhyP/+9xn3nzco+dF5KO7cSGHZ/10NikLrm28STxldbE1IcSUZNDINLaS42rxk9bnqytBCMRG6RZHPnumTBiPd48zmqhniSl/XOmgzjBKJZGhIR66U9myAsLc9LVBV1RzHwMaQLWBiNc1Z+8pMC4TMyFXP4koIkY5cecpzI1e9baLrNA/OFFcAnrSpxaZNGglL0PjCYuqf+RZ9Y/v7in5VAxZsLImwyr8Bv2GLkI6Rq6AniOmzr19Nze0RqOCuZahBNwUzx3bp5qd6XfhG2/vrbWqgFbU/16jLFkO9EVflwXLcijvHLRDa7dj7UnPV9mFKXKWuz61vvtnrbfuKMC2EadH2yafU3nsvABXXXsOw228ntPfeKKotDVSvl6LTTmX8W29Sdfe9FP/kIRT/TgDkHTISVDA2Jhn+wJ/JP/poAAJTpzL25ZcIH3hg+vXCBx/MuNdepeDkkwjuuSej//oXht97D57y8i7H6N9hBwpOOAGA2nt/u9VdZ6W4kgwajrgKeoJSXG1mrIRhR6boLi3QwtIsigP2ZyHt2LtGWCJ9AVbDHjyVIXArWDGj17OjEolk68SK2xMrmXWsmYYWkGtqESuwtzFqs/s7GqkeV060yVNl78doiPdo3W216oikCQpZKXLpmqvmnsWVsATaWjsy5R2ZLWq8Tt3VJtaSJhY2EJtbS+K7Rjb+fi6R/6zEShhEv6wBYO6IZQC4NTti0VkLH6eRsK7p6ZS7wM6lDPvVdAIpU6GuSKcGLm3u1XidyFVMsY9fb8pc3KqbilAFeqpPV1ZaoONs2JRAWD2LAisaJfbllwCUXnQhAC3/2TypgcIS1D0yn+o7ZrH+FzeAZVFw4okUnX12l9sYDRrahpHoG12gKhSdNomCo8bgTx3n+HcRhv3ut4x/601G//1veKqqcvbhKiyk/Oe/pOquhwjutVevxlp2xeUoXi+xr74i9mWuKcaWjBRXkkFDRq4GDyuWbRvcWZ8rHROhm+nIlfwsukYkDEhdJF0hD4pbxTssdSMiUwMlkm2adORKtDcRDrqzb8A7mloYxfbtlbsp+wa5Y+TKFfai5ntBgF6T3QuyI05KoKvYj+Juv31zFaYiJS1ajzfzRn0ckTBQPKo9SZSBU3elb4K4EkLQ8uG61Lh8YAlaP1xH9W++wmzRUEMe5hQtAkDR7OhTZ+KqOFRMIhVJykwN7A3+iYWAbZ4hTKvH9R1xFU+Jq3Ag3N3qaYaHh6ebCBuGgZmyHXfl+8ClQIbtfndEv/gCoet4Royg+PzzUbxetJUrSS4Z+NTA+Df1aGtbsWIWqn8YgalTqbzl5k4jgWarRtNLS9n4+/+hrW5B8boo/dEUQtPsiFMw9W9snl1X6B09GsXVudOiEIL6x7+h9qF5JFOR057wVFVR/n9XM/yB+wnu3TtBtqUgxZVk0MgSVwEprjYnVlRPz7KaqolXbe82n5UWqFkU+aW46gknJVDxudI3NY7LlhRXEsm2jSOutJS4cnvcuNTsm8iO4soxnAhF2s+9Qoj2mqvC9lRtbyp61VMz4XRKYGkg63lXnhcUwBRp4x2H2Pw62mZtSLsDOvVWnhFhFFf2DbVnWBgUuzaqv20mtJUt6Gtbwa1QftlUSs6ZjKvQZ09QAaE9K2g07CwJK24Ln45pgWCbWkQ89rHcsGFDn8bgGRZGDboRSbNX52cnKyGR6nMVNhWin3/e43bDwsPSkStoTw1UVAV3kdOXq+fMBiclMHzQQbjCYUIH2Sl1LW/+p8dt+4IQgtYP1qYfe0ZOZcQfHkT1enPWa/lgLTX3zrajjQICu5RSceW0dLQKwD+5BMWrYjYkejzO+ro2+zsooO2T9b0ec/G555J/1FE9NnXe0pDiSjJoxHR71i3oDlLsS4mruLyhH2iEbiH0dkMLl8eVdWLKdAsUmpmOIsq0wK5xzCzUcLuLVNrUYjP3hZFIJEOLFTcwsbCELQY6aznTseYqVFUIQF4ykE73E3EDodn7cGeIK08qCt5T3ZVjw+7YtzsoLgVXfsqoKCM1UNvQRuOzi2j+93Jqfjub6nu+ovVD++baaR6cSaapRX8t2Vs/sqNWoT0qcIW9BCaXUHH1HuTNGIl/p2LCBw4nkoygWAK92X6/nUWuygJlNPrt+4P163t/Mw62uHEML3qTGuhMnjlW7Or9j7LmvB8RmzOn2+2Gh4cjFIFQ7WhhZmpguu6qB3ElhEibWYQPPgiA/COPAqB1gFMDk0ubs4xTfFMOxF1WlrNefH4dLW+uQmgmnhFhyi7elZIzd8pKRQW7vi0wpRSA2NzanP1k7fPb+vb/f1Of9T3tjrrH5lP/14V9trUfaqS4kgwaMnI1OFgxHQsLU7Ev4qon+2fe7hZoSXHVS6y2dqdAh7S42tCGMHpOPZFIJFsnmWnWAH5fruFBx8hVWVEFja5UimCq7sq5oVTDHhRPe+TLMbXQeohc6Z3YsDukUwMzTC3i8+0bWjXoth30GhPp6JdvZK6ggU1LDdRroiQWNYICeQeOSD+vel0UHDmG0nOn4Ap7adFaOPJ/gkTSPq92FrkqDZTS6LPvD9atW9fnsTgRlmQvTC2ctEBHPLsb7W3aPvq42+0cx0DLZW+XaWrhpFwmVzR3u4/k0qUY1dUoPh/BvfcGIDxjhp0auGoVySVLehx/b2l+ZQEA+jq7vstsNtPvPZP4N7ajY2jfKsovmYpvTEGX+wxOtcVZfH5dlymYQoj0PhWfCyyIft5zNNKK6SRXREh822BvtxUhxZVk0JCGFoODGdUxaD/JuTvYnGamBVoxgxJVpgX2RKZToIOrxI8ScIMh0Gt6Z6MskUi2PkTcaE+zVsysHlcOHQ0tKkOVrPXZNt1arX1+MJuy660c0nbsNTGE2XWkwknt85TlGi64CuxJM6emSwhBbL7dpLfw+AkM+9W+lJwzmdC+VYT2rcLfhSmEx0l37kfkyolaBXYuTUfAOmJaJq1aKzuv8SFUFUUIQqHc41kWLEuLq/r6euLxeM463eGYWtj1Rd337bJiqYiVmdrWZd8ax77q3kTB6XWlqXYKZaa4CuxcAkD8u0aE3vXkW9uHHwIQ3Gdv1IB9zFzhUDqK1fKfgUkNjH65FKNRQVgGvgm6LdAFJFdl1z8J0yKxxBaXwd3LUdTu0/F8E4pQwx6sqNFllNDYGLO/u26FwhMmAND2RY3dX6wbnFTDzH5sWwtSXEkGDWloMThkzrJaWPi92bOs6chVqmdLaaIQkJ9FdziRq1Z3jJ+9/zNWRFagKIrsdyWRbAdYcSOdMqYreo5TILSLq0QiQTKZpDRQyrqUuGqtts+tTr2Vu4O4chX7UbwuMCyM+s5NLayEgdmU2r68m8hVSlzp69swGxMoHhX/TsWoPjeBySUUnTCBohMmZBliZOKc05IrIn2KyBvNSWLzbDGXd9CILtdr1VpRLcGIJnu8vkQCY82anPVK/aVoLo2k134/fa27chf67OMk7PfS7dgbW7GwMFI1aON/9zsA4gsWYHUj6pzIlWPHHpk/P53G5x2Zh6vAh0iaabHSGVGn3urgg7Oez3NSA998a5NTA61YjIan7SiciC6l6oar8Y21v68dj01yVQsiadotR0Z0Ht3MRHEpBHe1o1eOsUVH4t/YEVT/xCKCu5XhKvYj4kaPqYTOddXbRZR1S0aKK8mg0Zm4atPb0Mz+Fc5KOseK6V32uIKMyFUqlaEwZt8oyD5XXePUXH0bX8S7a97l7wv/DoDX6VGzsXuXL4lEsvVixY32puxqrg072HVYTn+kSCSCW3XTFLajP/GNdnTA6UPlCCEHRVXSluxd1V0ll0dApGbxw96c5e4OkatYKiXQv1Mxqrf3KVW2KPAiEgbx73o/4db2yXqwBL5xBd3eDEe0CKM3gnDbAjEQixPrxDyiNGjX8jT57etSv1IDJziW7NnXNqOhgdb//pfaBx5gzfnnk/h2aVo8AxTssQfuykrQdeLz5nW5/7JAGW7VjSXse5gNf3qIuvvuQwiBoigEdknVIy2o63R7s6WF2Ny5gG1mkUn4kENQfD47NXDx4r698RRCCLTVq9lw429Q8ycihEXZZTNRvF672TKQXJktrhKL7M/cP6mox6iVg+MamPi2ASuZG41yUgIDU0pRVIXwdDvi1/bphm6FY7KTZtdbC0Murh566CHGjh2L3+9njz324OOPu85xra6u5owzzmDSpEmoqspVV12Vs87TTz+Noig5f5mFhpKhIWbYN6ABd4B8bz5uxU5XkxGTgcWK6e03Ah1s2CEzLdAWV8FW+3EkGUG3uk+f2F5x0gI3Yl8kF9Tbueud1TlIJJJtCysjLbArcQW5phaJAnsbUW/ffHeVFgjttU4db3YdEstsgeAYNXTEORcZkaRd45JKCQzskmtY0B2KqrRbbP9vY6+2MVs1ol9WA5B3cNdRK7CvM5PXCuKpFLhgPEb0s1k565UF7HHXuO3eWP0RV74dUuJqSXsj4rZPPmXZod9j3SWX0vDIo0Q/m4XiDpJMNYg2VROXy5XuxdRdaqBLdVEVqqIy9fnqHg8Nf36cjb/+NcKyCOxqi6vEwkaEnis6op99BqaJd9w4vCNHZu87HEoLrsa//LXX0SuzuZmGp55m7WWXsfSAA1l+5FHoG+3vq3e4m8BO9us44krf0IaVaBeWaXHVQy+xTDwjwrhLAwjdyjKuADuVVa+JggqByfY+Q3tVoHhdGLUxksuaO92nEEJGrvrLCy+8wFVXXcWNN97I3LlzOfDAA5k5cyZrOgkRg53PWlZWxo033shuu+3W5X7z8/Oprq7O+utNx23J5iWut0euFEWRqYGbCSuafSPgd3WRFpgSYO4IKNgzVJFk9+kT2ytO5Gq9ZV/olzQtIW7E0zdJvWneubn578r/8rcFfx3qYUgk2xx25Kr7tEDINbUQJfYEoqfZrmVxzhMd0wIBfJNSQuC7xk5vpJOpehanh1NHMs9F2tpWzOYkitdFYMeiTtfvjnQkYnFTj5bsicWNbHzwfwjNwlMZSguarogkI0xeI2hNOQQGozGiX36JMLPFR6GvELfqTtddrV+/vs/pcb6xBbaRR1MSoyGBFY9Tc/PNiGQS7+jRFJx0IpW33IKaX5KOXFnu1KRjqq9SNNXctyumNuUzvN6+Prj32gsUhaZnn6P6hhvxVAVsG3rNJLE4NzMk04K9MwpPPQWAyEsvpQWbtr4tXXuXu78PWfH946i9+27a3n0Ps6EBNa8M98h9ACj6wa7pdV35PrvZcUbdldEQtw1PVLIs13tCUdoFecubq7K+M47Y8o0rRA3aE7mq301ozwp7zF3Yshv1cUTcALeajupuTQypuLrvvvu44IILuPDCC9lpp5144IEHGDlyJA8//HCn648ZM4bf//73nHPOOemTWGcoikJlZWXWX3ckk0laWlqy/iQDi2mZaJb9g3OaL8r+SpsHO3KVamyoGvjcnacF6lbqYtKYpNBXCMjPoiucmqvVpj17agqThQ0LcRWkbmiGOHJlxQ2qHtcofDnB0saBc5eSSLZ3hCUQSTNrwirs6bzJbEdTi2BxPnElgSoUjMYERic9rhz84wrtnkEtWpZdNoDRnLBvqBX7JrUzHEMLq01P17L4JxdnuRL2Fk9FCM+IMFiC+Nedp7RZmknTv5dR/9S3WK067vIAxadP6rEfUSTRxE5rBZFC+1gVJeJYkQiJ7xZlracoCqWBUiK+CKqqEovFaGrqW+q66nPhG21HE+uf/IbaP/wdff163FVVjH35JYbdcQd5M08AA5JKKmsj5f8USkWuEl/Px+oi80kIwVGvrMer29t69pvOsHvuBpeLyCuvsOHnv8C/UyEAsQXZEZ3Y7Nm0zfoaJVyRNq/oSPjAA6m87da0YNtwwz3U/nEutQ/NyzLpMNuiVN90E2t/cjFGXR3esWMp/8XPGf3ss1Td+1cUxYV3TH5OBMj5LjmOhk7Uyju6ADWQbYTVE+EDhuEuC2C2aDS+sDjdzDqdEpgy+HAI7TcMFFvAO82xM3H6sXmHh1FcQ55k12eGbMSapjFnzhyOOOKIrOePOOIIPvvss03ad1tbG6NHj2bEiBEce+yxzE3ltHbFXXfdRUFBQfpvZIfwrGTTceqtAAIeOx1ARq42D1bMSEelDCU3cuWIK9MysRAYDXFpx94DTlpgg9Kcfm5B3YJ0nYMVM3p0PtqcxDdEyDNDTI3tyOolS4dsHBLJtobTQDhzwqq3kavKcCXrfLbQ0TdEsVpTLR2KcjNpFI+Kz6kR+q4ha5kTtfKOzOvyplcNeSBlUhGbbafzBfuYEphJaHc7shDtxHRA3xil9g9zic6yUwHD+w2j4vJpeCp6jjBoS5cRTkBzSlxVjLDvt6Kzcu/7hoeHYykW/tTxWv7Bh6w66yxa33uv1++j4JhxuAp8tg194yR8u/6Q8muux4orNL28lJp77bS/uNue/FU8tjj0jB6Nu7wcoevE533d6b5b3niDsqX1KKb9uSaTSQq+/32GP3A/isdD61tv0fDQTQAkFjYgdBOztZXqm29h7aU3EtjzakKH/grvuJ27HH/Rqacy7J57wOXGaBoOwr7eNP+/72j79FMa//Z3Vh5/PM3//BcoCsXnnsvYl1+i5IILCO4+jeRS+7sY2Lk0Z9/ecdmmFvFUdC3Qh5RAB9XnpuTMnVA8KsmlzbT+dw1GxI6iokBgcvbre0oD+CfZrxP9siZnf+mUwK2w3gqGUFzV19djmiYVFRVZz1dUVFBTk3uge8uOO+7I008/zauvvspzzz2H3+9n//33Z+nSrm84rr/+eiKRSPpv7dq1Xa4r6R+OuFIVFa9q35Cme13JRsIDihnNNrToWHPlzejGbmBiRjTKPPaJTwrdXIQQ6bTAglgJB284GJflYn79fJSAG8Vrn0aHMnoVbWqPtrvmS3MNiWSgEI64ShkAGUrvxVVFsIK1Xvt+xqktUTyq3XeqEwI72dfEjkYSidS2XdVbgR3pcdINhW6h+Fz4J/U9JTA9lt3KQFXQ17Whb2yPpJlRnfqnvsWoi6PmeSk9f2cKjxvf6wiZ++slJL1ekn57knX4HrsDEJuVa2qxY/GOAGh5tvBZ9sYbxGfPYd3lV9D0z3/26vW8w8OUXzUNEbdNIbzjDiU6J4+a384m+kUNGALv6HyWTrQjS66U+YeiKN3WXVnxOLX3/haAxcPt74hjxZ5/+OGMfPQRPCNGoK+ejxWrR+gWNXc9wYpjjiXyyhsE9rkExe1FUT20vt99k+SC7x9L2S9+j6toDMKyr+3RL2pZd8nVbLz9dvT16/GMGMGoZ56m4vrrUFNlMFZMT9fwOd+tTBzHQH1DG2aLRnJ5MwD+fqSSgt3bq/AHttV6y3triLy2HLAbVjtNrjMJ7WXf/8fn16UjXQ5SXG0iHUPIjstKf9l3330566yz2G233TjwwAP5xz/+wQ477MAf/vCHLrfx+Xzk5+dn/UkGlkwzC+fzlZGrzUNHQ4uOboGZfa/MlO4aY9mWsvKzyEXEDUid+CuiVZQmSylJljC/bj6KomwRqYGxSLsV/Mg1xZ0WT0skkr7jRK4MT0pcqQZhb+dpgR0NLSpCFaz12eLKseN2Ffq6vMfx71gMSspGPXU+EZYgmTKz6KkOJjPdMDClpEu79UwWNizkB//+Ae+veT97XyFP2tTASTMUlqDpH4sxm5O4SvxUXLU7/h5qrDoS+nYVzYWFABQVFVG0//72a/zvf1hadn3XpKJJAGx025G4uoAfxeMBy6Lmpl9R/8ijvarDin74Hm1v/Y74F39AzXPZad7CNrwo+/GulF28K40ee4LK7W2/PnYnrhr+/DhGTQ2ispR5Y+zvSKZxWmi//Rj/nzeouusurLZl9vIlrRh1DQQPvBI1WJz+vGLz6rrtK2ZGdZKrbTGqLfk3ZuNyFLePwF6nEz70UEovv4yxr7xCKNWE2CGxpAkscJcHcZfk2ve7C324iv1gQct7q8EUuIr9uMtz+6j1ltDuFYT2rgTRdUqgg3+HYhSfCzOioa1pnyC0NBO92j4e3pFb5/34kImr0tJSXC5XTpSqtrY2J5q1Kaiqyl577dVt5Eqy+cm0YXdwxFVDoqHTbST9I7PPVWeRK0VR0qmBFNr/jjDsukSZFpiLkxJouE08ln28AmaAjbGNbIxuzCgkH7qWAlqkPe3Wb3iJfSN/UxLJQJAWV6nIla7qhNzdR65aWlqwLIuKYAXrvLYwMCNdOwU6uPK86bqYeKr+Ra+JYkUNFK+rx1l8Z6IHILBr71IC3139Lsual/HSspdyloV2T7kGzq1FWILWD9faxgxuhcBOcVR/324hhRAULaohkjpO5eXleCdMwFVWikgkiM+dl7X+pGJbXG1oWQhAc2EhZXfeQclPfgJA3QMPsPGuuxBW1/24zLYoG+/6DQCFJx5E5c/3pvAHEyi/fBpl5++Mb1wBiqKgJe3zt8fX3qw2mBIr8XnzsDIaBGurVtHwxBMA5F19OQlPrrgCUDweCn9wAlU3XwSAe9g0Cn74a9TwKBSfi9ILdiY41f6cIm+s6FIotry5ChE38FSFGPO32ym94AAAXBV7UnX77yi79FJc4dzvpBMBdVz6OsNxDYx+Zd+L+ycVbVKAA6Dw++PxDGsfT2BKbkoi2FHcwBRbeMUyavv09W1ggZrvTdcSbm0Mmbjyer3ssccevPPOO1nPv/POO+y3334D9jpCCObNm0dVVdWA7VPSdxxx5ZhZAJT47R+VvKEfWKyOaYGu3Px+JzXQKrBTICqS9mchI1e5OCmBbZ4kHmFfeId77UjfgvoFW0Tkymi1L+qtqp2+0/yVTG2WSAYCq2NaoGoQ8nZvxW6aJrFYjLJgGWt92Xbm7sLc83Em/lT6ViJ1Y+zUW/nGFfRY2O8INyXgxt9NCmEm1VG7bmpF84rcsexYjBJwY0Y0Wt5ZTcvbq+2xzfs71T//CRt/c3evXsNBW7GCQGuSpqJ2caUoCqF99gVy667GF47Hpbj43vvV+BIJLJeL2NSplP/sKipuuB6Apr/8lbUXXkR8wTc5rxf/9lvWXXopxsaNeEaNouSiC1F9bsL7VKWt7x30pH2ez3SW9o4dg6u0FKFpJObPB0DoOut/cQ0imSQ4fV+GHXsSwmWLomii8x5l3lEFuIp8KKoHK14KChSfviOesiD5R4wBl0JyeYRkJ82Gk2ta0sKn8PjxuMIhQvtMsFNETUHLu6s7fU1hWCQWp2zVd+o8cgTtqYGk9Gl/6q06onhUSs7cCVehj8AupbiLu/7OB3ezxWV8QT3CtI+jkxLoG5m3yUJvqBjStMCrr76axx9/nCeffJLvvvuOn/3sZ6xZs4aLL74YsGuhzjnnnKxt5s2bx7x582hra6Ouro558+axcOHC9PJbb72Vt956ixUrVjBv3jwuuOAC5s2bl96nZGjItGF3kG6BA48wLNvZqps+V9BuaiHybHFVHLdnRKXQzcURV43u9rSFKo89WTO/bv4WIa5Em30D+FrRhwBYK2JpZzLJ9oMRScqU0AHGqTfKqrnqInLlcrnIS1mMRyIRPKoHLd/CpD2y0l3kCiCQuhFOLGvG0swe+1tl4htri7vQXpW9SgmEdnG1rm0dCSOBtm4dq04/g5WnnUb1Lb/C5bOj4K3vrwUB+upP0Zd9AEDTX/9K6/vv5+xTWBaNf/krjc8+mxWNiX01G4CNZSkzi1SWUmj6dHt5h7orn8vH/q1VzFggKG5ot2QHKD7nHIbdew94PEQ/+4xVp5zC2p9eQmLhQpLLlrHuiitZddLJxL74Ajweqm65OV2L1BmGZp9Dff72z0dRFEIdLNnr/vQnEgsWoObnM+zOO3GpLgpDhQDE451bpNsNhdsjiflHjkmLGHexn/D+dlPdyH9WZtUeCUvQ/IqdUhjcowLfmHaX7IIjx9jHbG5tVk2cQ3JVBJEwUcOebvtEOZErSJmqdOFG2VfcJQEqr92LkjN36nY934RC1KAbq01PuxY6KYJba70VpE0nh4bTTjuNhoYGbrvtNqqrq9l555154403GD16NGA3De7Y82ratGnp/8+ZM4dnn32W0aNHs2rVKgCam5v58Y9/TE1NDQUFBUybNo2PPvqIvTvkokoGl+7SAqW4GjjSKSwZkauONVfQLq6ssH0Bzo8GIE9+Fp1htjlOge3Cs0ixJwbm18/HXXIGAMYQ9rpSovYFeVFgFfOCi5ga25HYnFryvzdqyMYkGVy0DW3U/nEugV3KKDl9x6EezqBw1xd3IRBcv/f1m22G24kgmX6grfvIFdipga2trUQiEYYPH05JuJRqbx0jNFtI9CSu3BVBXIU+zOYkiUWNJFfaN5pd9bfKxD+hiMrr98aV1/tUqpqoHRWxhMXKxV/ivvwWjA224Ep8PR+16H+EDrajRGZkLSI+mxEPPUT081k0/eWvVN9wI/5XXsFTYacQCtOk+uabifzrRXub5mbKLrkEsGuXBBAPtUeuAELT7chV/JtvMFtbcaUEqhCCU960oxj+PPtaldlMuOD73yew667UP/wIkVdfpe3992l7/31QFBACFIX87x9L2WWX4R3V/blQ6PY5NBTI/myDe+1Fyxv/IfbVbGJffUXDo48BUHXbrXhSGVElebYg1rSuU8NDe1cSm11DYEppTqPl/ENGEv1qI3pNjNj/NuLfqYTYnI1Ev6zBqI+j+F0UzByTtY13ZB6BKSXEv22g5e3VlJw9OWu5873171iMonb923AX+XEV+TCbkvgmFKJ4Bi7m0pvfpOJSCexSSvSLGmJf1+GfWNRuw76V1lvBFmBocckll7Bq1SqSySRz5szhoIxmak8//TQffPBB1vpCiJw/R1gB3H///axevZpkMkltbS1vvfUW01OzIpKhI9PQwiFTXPW1OaCkc5zeF5mzrN2mBQbtU4C/xZ5nkeIqFydyVUu7uPKnnEAWNiyEfPvYDWXkyhNPNYH2tPJ2oT37G52zMceBSbLtkljcCJZt4+2k12zLtGgtPLvoWZ5b9Fw6+jLQGI0J9OooKGC4MwwtuuhzBZ2bWjh1V9CzuFIUJZ0a2PL2ajAs1Hxvr00G3AW+bm+mMzEtk40xe2wlEYF+yXUYG6rxjh7NsHvvpfSSnxLaczxW2zqEESX/e0WMfekf5B06g/Kf/xzfTjthNjWx4dprEaaJMAw2XH+9LaxSN9b1D/6Bpn/+EyEEsa++IhoKgepBdamUlNiixDNsGJ7Ro8A00+YRQghaXn2ViqUNJN2wbKp93JzIlYN39GiG/eYuxv2/18n//vfTwirv8MMY++9XGH7PPT0KK2gXV+FQ9mfrmFrE585l/bXXghAU/OAH5B91VHqd8nxbJJqa2eW9jKc0QNVN+1J00sQc0aEGPeTPsC3pm19bQfWdXxB5Y6UtrLwuik6ciCucK5jzjxgNCsS/bUinADrHLl1v1U1KoINTExWcWt7jupvCyy+/zIMPPkgslu1o69QHxr9pwGhMYLZooGL3WttKGdLIlWTbRghBbPZGPCPyuo1cJc0kMSPWpb2tpPc4QsBwWWB2bmgBGb2u/PZJ3tUqcAsXTcmBTws02zTUkGerzZ12jmlEaQPsNEoraREuCNOmt7FOrSEEmEMUuRKWEqbVHwABAABJREFUwJewP8/i0nI+a5lL3HU6gUZIrozgH184JOOSDC7ObK/QLPTqNrwjtt6Umt6Q2cLju8bvGBYeNuCv4fSb8o7JJ6HZv29d0bu9VnVsJGzbsW9k39Rydyc9rjoS2KmE6Kxqu3Ew4J9QuFnOnw2JBgzLoKRFcPOzJp7mJjyjRzHqL8/gyTAWE5YAU2RFNVSvl+G/+y0rTzqZ2OefU//ooySXLqX1P2+Cy8Xw395LYvFiGh55lJqbb8GKRjFqa2kcYX9ORcVFuFzt9u2hfafTvHoNTS+8QNsHH9L2ycfpCNqr+ygsCK5mKkU0NTURjUYJhbI/A9/YsQy/9x7KLr8MkUzimzixT8dCMezjGw5m39B7x4/HVVyM2diIsaEaz8iRVNx4Y9Y6wwqHsYENgB298vk6F9DdfYbh6cNo+2xD+jriGR4mtE8lwd3KUH2d36p7KkKE9q0iOquahucWU3HZVNylAYyNMczGBLhVfL2IeBYcNYbQnhV4KjffPVhjYyNff233C1u0aBG77757eplvbAFqnherVaPlPTtbzVMRQvX2vQH2lsKQR64k2y7aqhaaXlxKw9PfEtdShhae9tm3oCeYFluy19XAYMVSxdeZaYHu3BO9E7kyXBaKR0URUK4XE0lGMCxjwMaTWN5M9e1fEPnPqgHb52DjpAVG1fYapmg0ys6lduPHBcnvABBJEysxcMeut1gxHVXYF+3JI3chqep8kGfP/sbmbOxuU8k2ghAiXQQOkFzd0s3a2waZUfbFjYs3y2tkzv47PYxM1cyaJOxITq+rUAVrfanImkKn/X464htXgJJxY+nrwYLdQVuzhjUXXkTNr28nNmdOjoue0HXiCxYQee01mp5/gdonHuekTyxuelZQ2QyRsgCjn8kWVgCKqnSaLuYbN47KX9pCo/7BP9jCyuNhxO8fIH/mTMquvJKCk04Ey6I2ZX6xcoR9fCorKrP25dRdRT/8iOZ//ANjQzWKz4dv5uH8e7rKiugKikvsCdlvv/0WXdc7PQbeUaP6LKwAXKZ9vAtCBVnPZ/a7wuVi2D135zjzDc8fjpWqq0sm+zfJpnhUSs6ZTN6hIym/bCoVl08jvHdVl8LKofCYcXhH5SESBvV/WYiVNIinJgX8Ewp7JVAUt7pZhRXAggUL0v/v6N6tqArBXe3oWex/9jVra663Ahm5kmxGjDpbUJmRJKH19om540Wp2F/M+rb1NCQaGJk/ctDHuK3h2IYnsf/VVK3TtEAncqXrOu4SP3pNjOFaORu8dTQnmykNdG6d2lcSKTthbSu+2XMiV3FFI4h9AYpGo+xcsjOfV3/OvOavme4fgUgYmJEkqn9wT6tWSvxFXK2MLxlPoa+Qtws/Y2bzAcQX1GMdN37QxyQZXMyIlv4eQOr3tv/wfu3LiCRR3CqukKfnlYeQTPOd7xq/G/D9WwmD5ApbIPknl6B9YtfTuL1uVKXreenOGgm/7rOjGq5CX6+MJhS3in+HwnSfoN46/9Xc9muin3xC9JNPaPr733FXVJB/1JEoPj/xuXOJL1iAyLALdwH7jBnNx0fsw4Tv5vLmTI2/VVZ2/QKdUHDiiUQ//ZSWN/6D4vUy/MHfk3fIIfb7UBSqbr0Vs76Btg9ts52NZfZ7qarMdnAOHXAAvsk7YUWjhA84kPDBBxHcay/UQID8f8ygPl5PuCxMY0Mjb7zxBm+++SZVVVWMGjWK3Xbbjco+jjsTIUSX4gqg4Pjjafvvfyn72c8IZtT9O4zIH8En6if4LB+xWKzfvVK9w8J4h/UtFU5xq5ScNZmNf5yLURuj8YUlmC22wPN30jh4KBBCpKNWAMuXL8cwjKyem4Hdymj7dAOksiq9o7beeiuQkSvJZsTIqEEZttyehegorop89oycdKkbGJzIVVKkaq9Uvdu0QF3XcaWaC46z7Lz0gay70tbZs+nmVuxcZ3UQrGBfLCbn2QXE8+vn4073uhr81ECz1b7pa3S3UOgrZFLRJBb5V5EMmwjdSn8GEjuio9fFel5xK0Nbm5q8cNsRzOSqln7VsRpNCTb+bg51D83b4uv1MvsjLmpcNOD7TyxuAkvgLg/YE1Ca/ft3ov5d0VFcVYYqWepfw/Oj3qHo5B16/fr+yal6pKpQrwwq2j62RRUeD/nHHosaDmNs3EjjM3+h4bHHbDOJRAK1oIDgPvsQ/t73qDtwMrOn7giKwpLJU1ljxEiafTuHKYpC5W2/puzKKxj9l2fSwiq93O1m+AP3E5g2DaEoxMLZToEOrnCIcS+9xIS33qLypl8SPugg1IB9bXL6XXkmeJg8eTKhUAjLsli/fj2zZs3iscce4+OPP8bqpt+VQ0vLAj75dAZr1vwt/VwsEUNN3Q4X5+UKkrxDZzBp3lxKzv9Rp/scHh5OxGt/3qvWrOpxDAONK99LyVk7gUshsbABfZ3dgDewhYir9evX09jYiMfjIRgMomlajlmdd2ReVj1idw6HWwNyOlOy2ci80Ry+vojwhGBu5CogHQMHEiuqIxBoln3D3VXkyrlBsCNX9mcy2rRz4QdK6ApL2M0AAbNFQ5hWj31atkScaKBjb+8w2m+7mq6MrETkq1CTPaEwaONLiasmdwujvDuyQ/EOfFHzBXXhCCPaijHqEzBh0Ie1xaHXxah79GtceV4qr92710X/WwPaWvt3FtyljNjXdVgtGmZTstv+Mp3R9sl6hGZiNJho61rxbcGzx5nnqZpoDc2JZgr9hQO2fye1KrBTSZYLXMDXdUogtIurtrY2DMOgIlgBCjyf/wb/N+7WXr9+cGo5VszIssruCmGa1N57LwDFZ5xOxfXXY2ka0U8+pfXdd+1xT5tKcPfd8Y4di6La5+G/vX0X5mf2OUtFZY/aPVjesJzJ5ZM7f6EucIVDlP70p10uVwMBRv/1L8xa8Ba+f38BtDsF9oZJRZP4dP2nrNJXcdOpNyGEoKmpibVr1/Ltt9+yZMkS3nvvPZYuXcoPfvADioo6T6O0LI3/zb0c01zLkiX3MXLkGSiKSlOb/V0yMSkIdH68FVfX6XUl/hKagk2UJ8pZtGwR++69b5frbi58o/Ip+sEEmv5lp9x5RoRx5XdvnjJYzE/1CNtxxx1RVZWvv/6apUuXMm7cuPQ6iqIQ3K2M1g/XofjduEu7/51t6Wx9dzqSfpEwEkT1zhvcbS4y3dNclsohkT2zaq5A2rEPNFZMx8DCSs1a9xS50jQNd4m9fJhmX+wGSlwZdTGElppJFHbq0taGECIduTLJnsl36S5GhG1L3SZvSkQOQeTKSQdrcrVQ4CtgUpE9y7vabaciOUXx2zuJ72w3PTOibXPHJN10c3wBnmF26mpfU3GtmJ5uVgqpyM0WTMdrxkCmBgrTIrHIfv/+ye3iSiB6FFfBYDCd7tTa2kp50D6vJs0kzcnmXo9BURXyDhjeqzSxyCv/JrlkCWp+PiWpnp6q10veoTMYducdDLvzDopOOQXf+PFpYQXQssr+joSqQhgegwK9gI/e/6jXY+wLittNjUiiomK6zD6lzjnntMVNdm2doigUFxez2267cfrpp3PCCSfg9XpZs2YNDz/8cFYKWiZLl/0R07QbrCtqhKYmu+9Wc1szAIar8xrlHt+bopBfZb+f1atW9yqCtjkI7VlJ+AA7HTi0e0UPaw8OpmnyzTd2g+ddd92VHXawo7cd667A7s+mBt2Edi/f6ie/pLjaTrjo7YuY+eJMIsnIoL2mI66cvN8jIvt1WnMFUlwNFFbMQEulr1lYmIrZbZ8rp+YKoCxZCGSn22wKWio1wWGo3PQ2BZEwoQtb62g0yi5luwCwXrVvSodCQOotdsplUyotcIci++K1kCWALXIlZFkVO00qtwXsCLHTFyYv3Wi0r6YWbV9U25MhqZuazOO1JdJxEmggUwOTK1sQCQM1ZDdgdUwKDKX7HleQutHOsGP3urzp65xjez6QWLEYdb//PQClF1+Mu4uoTUd0Xce90RaB43cbj3tn+/8139WwfPnyAR8nQH1tPQBWyOqT++GOxXbftiVNS7BEtnBRFIWpU6fy05/+lJEjR6JpGi+//HKWgQJANLqctWsfASAetwXrypX/BLLFVX85dtqxGIqB0ATVNZunNUBvKDx2HJXX7UVoelXPK28Ckcg8Vqz8A5bVni6fSGSn/5tmnKVLvyMWixEKhRg3bhzjxo1DURTq6+tpasr+DbtTdvWFx43frGMfDKS42g6oidYwr24eTckmvqn/ZlBeUwiRvpnOmzESUzGZmBhFcSR7Fs656AzUDf32jhXTSSopx0BVB4VepwUWxEKoQhmwG4COtT5DkTK3qTgpgXE1gcuybz7U1MxvW1sbu5XtBsASc4W9/hC8x2TEFk9N7hbyvHmMLxyPW3GzTLVz2reGKE1yZYTYvNrNtn8raZBc1S42HNvybQGj1o4QK14X7rIg3tH2jb22qvfiSuiWXUwOFBw5BgB9XVs65bTbbS1B6yfrSa7ctIk7M6qnf2+9oTHRyJjEcPYMTAUGNnLlWLA7DVidyJWu6t32uHLozNQCYGN04MVVw9NPY9TW4hk+nKKzzuz1dosXL8Zluoi5Yuw4YUfGTxzP8jxbVL3yyis5vYgGgpZG+zvpyu+bxfao/FH4XD7iRpy1rWs7XaeoqIgf/ehH7Luvn2HDv+O11/6VbjgshMW8ef+Hopg0Ng6jseFwAJoj7yGESWss1cbA1f86wyPHHkkkaH/e7817r1fb6IkE8baBPxe5C/29Eq/CsqhdtYL//edVvvv4fSzT7HEbgFhsJXPnncvKlQ9QU/NvAL766ivuvvtu/vWvf2EYBkmtnk8+3Z/Vay5FUUx22WUXXC4XgUCAUam+Y51Fr7bWli0dkeJqO+DruvYQ+bLmZYPymiJuIHR7hslbFeK7EvtGr3JZ9qyfjFwNLHbkyhZXmmrfEPSUFugq8IFLwSVUSvUi/rPyP5hW706y3eEU1So++0K6NZpaOCmBza42vJYtSIuL7e9sW1sbOxXvBMAi3f5dDUV0Tm+1j2vcp+FW3XhdXsYUjEk3LjWaEghjaNJUeoMQgoa/LaTx+cWbTQgmlzVnRSC3JatyJyXQOyKMoir4xtjiSt8Y7XVrgNjcWqw2HVeBl/ABw9KphYklPacGxmZvJPL6Chqe/a5fJhhCCKJf1VBz95dU3/UlkTdX9WrcVdUFPLzyRn719QXsEp04YJGrrAasKVOJdORKNXJS2zujM1MLGPjI1aoFC3j3s1loHg9lV/8MtQezjUzm/G8OAKvzVjM8bzjjC8azoHgBCV+C1tZW3nzzzQEdK0C8KdXvsrBv9TRu1c3EQttevbvP2TCa8fqeYvz42Uzb/V+88+5NNDc3sHbtsySSCzBNN8HAReyyy2nouheI0Nz8FW0x+1olPP0XV16XlxGj7TTxb5d+2+P6lmXy/C3X8siPz+KbD97t9+v2FSEEiz79kFfvu5OHfnwWf732Ct5/+jHe+OPv+Ou1V7B6/jw2bNjAgw8+yPPPP091dXYUzjQTLPjmMkzTPmYNDR+wYcMG/vOf/yCE4JtvvuG5556jpvo/GEYEt3sdo0bPZ9ddd03vY2LKKr8zcbWtIMXVdsC82nnp/w+WuDJSN5lqyI3icTGrzA7RFy51Z93oOTN661vX5+5E0mfMqE5SaXcKBHpMC1RUJV34vgNjqYnW8OG6DzdpHMKw0Krtk6+TFro1pgVabbZAjbha8YtU+mSZ3U0+Go0yKt+egVtkpsRVJJnj0qZtaEtbOm+WMbamPu9A++9qUvEkGt0RDLcFli2wtlSsFg0rmoq2btw8daFO/VAg1UvFqI0NSU+yzUFaXKXctVx5XlzFfhC9i9AJS9D6sT3DH95/OIpLxT/J/s32lBoodIuW91YD9vdQ39DW7fodMaM6DX/7jqYXl9opiYZF6wdrqbn3K9pmbUCYnU8KGI0Jzlp6JAAe08Wv115K8foAMT032tLXiYXOGrA6kStDMfoUuWpstI+fc52ridZ0uU1/ePVf/2LxhPEsOPRQ8o8+utfbRSIRVq5YCcDGgo3ke/MZXzgeUzX5osQ2nFiwYEG6EXJ/WL16NWvXZkeZjBb7N5dX0ncnOMcxsLueZvX17yGE/Rpeb4JRoz7is1kzWbL0NwBs2LA3hx56ChMn7kRDg936Zd26V4jG7POO4tm0qMnMPWYC4G52s7yp+9TKpV/MonblcizT5K2HH+CLV/7JhuqXmDv3HJLJuk0aR3cs/uwj/t+D97L0i89ItLbg8fkZves0/OE86teu5p933sQzf36MxsZGFi1axKOPPsrzzz9PTY393V285Bba2hahqrZAbmj8mBdf/AeWZTFixAg8Hg/Lly9n/oJ2N8aRI78lFGrPTHDE1cqVK7vsV+bw/9l77/A4yvP7+zOzvaj3ZsndlnvFxjY2LtTQayDUEHpJqMkXSAiEJJTQktASqgm9GjA2tgHj3rvlot67tNreZt4/nt2RZBXLxs4P8upcl68LtLOzz8zOzjznOec+d2NjI6HQT+9e3U+u/n+AjspVUevx8VIfiqg9ShcnJvbbY/bTqG9F55O0VUGAIQkixqzSVdntg7EffYcaVlF97cpVUCduWt0pVx1tgYBmDTwtbh4A7+1/7weNJVjngZCKZNZjHhwPQKjl+JEr99Y6qn6/Fl9R6zHdb9Sm5NC7MCiCkCYniwm6y+UiyZyEVW+lUS8m72pQ0eLwQUzsGv+9i4Z/7TxuxEFyC5VRtbXfzocnDAcJmqxichTtOfdjRMdo9OOhXKmqqvVbs01OR5dg6jPx+CngUHIFYIpYA/2lhyf1vn3NhBq8SCYdtqlCYTGPiJCrg62oPdQcgqjT6lhneCQhGL4DLdQ9sxXfnibQScSdnkfSFfnoUywo7hCtnxVR9/TWLiqjGlRoemsvtrCFfeYSpKE2TKqRP1TeQOnmvWKbsIJnRwP1z2+n6oE1uI+gmbZ3T9cGrB2VK5vh8M1WMzNF8mrUlpZmi9gCj6FyVbl2Hc0RC1VhQnyXaOveEA18aDA3EJsQiyRJpFpTsRvsNJoaSclMQVVVtm3bdsTjCgaDLF68mNdee41XXnmFjRs3AuD1epH8YrxJyUlHvN9oLemBlgM9btPQ8DUAeXm3kp19N6GgGZOpCUny4mxLYsL4O7FYLNjtdhRlonhP41I8PrEooOvQcPdoWhmMHjgaRa9gUA28v/H9Lq/X1NTg8/lQVZVNiz4EIDlHpM5u+folCvbeR3PLGqqq3zniz+4LlHCYtR+8DcDIWSfz80ee4JZX3+XC+x/h2mdfZsLpZxFIycKvghQKkpkgFgn27dvHiy++yGef3UtNzQeAzLixL2EwJBIOuwiG9hMTE8Nll13GlVdeidWqx2QS5L2tLRlJUtlbcB/hSMx/amoqsbGxhEIhSkpKehyvqqq8+eYbPPvsQ10UtB87+snV/zh8IR8FTe1e9KLWoqO6aRwpDiVX7rCHFXFiRcyzuX31LtGcSIpFKAEHW/93JeL/BhRvUEwapXZboFE2dtvwsqMtENBCLSYaxyIhsbZ6LWVtZUc9lmi9lTHbrvWuOJ7KlXdXI2ogjGfTsV0Z1myBcpvWZDJKrtxuN5IkkROTQ1AOEbKI31XH4/SXtQmypYJ7w7EdGwjypvNFVlvt7Z01oulaFXrxQPox112F6tvHFjwOJDBU5yHcFkAyyJgGxrXXJP0PhFoogbBG2g0dyJUxr+91V87vBQGwTcvQmk0bc2KQrXpUb6i9h9ahn+0P4fy2otPn9TUEw1/WRuNru1GcAfSpFlJvHk/M7Bwso5JI+/VE4s8djGw3EGr00vDSDtqWl2kkr/XzIoLVbhw6F49m/5uUX4yiILUcg2ogZpGHls8KqX18E83v7NMItGNxcZ+USn9ZG22RY7KMbicAmnLVR3KVkyNUkcbGRjwezzGvuVIVhc1vLQRAijzPv/zyS8J9qJlRVZXt27cDUGYvI8Mmgg8kSWJQvIjGjhssJtVbtmw5ouS7pqamToQKYPHixXz77bfU1wvlwq1zkxDTt9CNjoiGWvRkCwyFXDQ1rwYgLfVMhg+7iWHDPqCycjStrWl4PJcydux4bfvMzLkEgyZUtQ19WCw66416FCXE7j2/YdXqE/B6K49ojLIsk5Ytvuuyks3sO/gYwaD4/ezdu5eXXnqJhQsXUrZrO3XFheiNJi76/Z+ZfeXVDJhbBZI41w31Xx/R5/YVBau/o6WmCnNMLPN/eROZw0aiiyRbWuwxDJ13BsFkcT2Yaspwrl3BYAIMHzoEm60Zi/XTyHGeS2zsCciyCHRKTKjiggsuwGq1kpOTw7nnjkCnC+PzWdmzey56fRIeTyElJc8A4lobMliEVhTs6d5CqaoqX3/wIAMHvc/I/EUkJv5420J0h35y9T+OPU17CKkhEs2J6GU9npCHGvfxXwEIt4qHUXRi7Q15WRa3DhArlh0Ll/uyItWPwyOqmAQM4gEblIM9xsp2tAVCu3JlaTMwM2sm8MPUq2i9lTE7phO5Ol7EPtQkJuW+Iscx/YxozHmrvl11SkoSky6XSxxj1BrotYprvmOoRceaFffWetTgD69l64jo7yhEGKOtXaEclhj5TcliVfDHTK6C9UeuXKmqSstnhbR8VnjY79sbUa1Mg+MFwYr0bvL/DyhXwWoXKCDHGtHHtf/Wo8pVoMLZo7Uu+nqgtA10EjEnZmp/l2QJ01AxAe5JjXKtrkZxB9EnW0i8dLi2v76EUni21oEK5uEJpN46AWNWu9VO0snYp2WSfvdkrBNSQYG25eU0vLyTtu8qcG+sRQUey3wVvy2E0WSi4KRGvondiKRKuNcJNU22G4idPwB9slDCoiSyJ4SavDS9uQdCCuYRiVgntEdZR5WroNS3QAur1aotwlRUVBzzmqvWjz6iNHIPn3viiVitVurr61m/fv1h31teXk5zczOSTqLSVqmRK4Ah8cJJ0hrfisVioa2tjcLCvpUS7Nq1i5deeona2lqsViuXX345cyINhVeuXMnnn38OQJuxjTjj4Xt3HYroPKHOU0err7XL601N36GqAazWgdhswnY2cGA+J0x9DL/vVk4//ZpOYQnDho6ksVHcu2ONwmpoNBnYv/9B6uoWEQw2UVP7cZ/H525toWDNSiYMGw8oLMgqoqriZUpK/04wGGTp0qWAaKj79WefADD65AVYY+OIHbYPS2KAkFeHqoDLXUBN6aYjPUW9IhwKse5DoVpNPfsCjJbOtYPBYJDPPvsMVVVJHZzKxrwisIUI+FdjdP+diRO/Q6cTgSArv7Py1HNPsWOXeJ7FpZVz27bbOO2j01i4dyHNNeJYW+rTkOpbUepPBqCs/N84HNtorq6iau13AOzatpVwuPPCR3PLOjZuuAB98jvExjZiMPjx+o59o/DjiX5y9T+OaL3VxNSJ5MXmAf+duqtDlStvyEuVqR4SDaDSyZsfvWn25qXux+GheMSkJqAXk6mgHMSi675wuKstUEzMQ01eLh1xKQCfFn6KN3R0k/KOypU+Qq7UQBjVe+y906qiEmoSNUWK89j2MIpOFJ2yIABGo1GLWXa73SiKQk6MWKVuMYpj7kiu/FFyJYHqC+HZ2XjMxgbieAGa9K1Yt1lZtGgRAMmWZJLMSVqoxfFQhI4VQh3JVR/H6T/YintdDe51NSKsohdE1RTzcEEWjAOEwhMobzuqAIYfE6LKjDG7cw2LPtWKZNajBhWCNT3bUT27RG2HZUyydq+OInq+nHvreGffO/jD7de14glqZCV2wQD08WYMGTZQO1zzPUBV2gMjbNMzNevdoZDNehIvGU7ipcORTDoCZW20LSkFwDVdzzb7PpLMYqFjePII/pb5Bt9lbcM4MJaEi4aR8dupxM7PJe60PPGeVVWE27pXz8PuII2v7UFxhzBk2Un8+QgkXftEvKNy1ZdAC0BLRCsvLyfdKshVtauaRu8PuweEW1speuFFWhMSkIBJs2ZxyimnAPDdd9/R2tra6/u3bBFBFkqaQlgOa5ZFgEFxQrkqdhYzfvx4ADZv3nzYMRUUFPDRRx8RCATIzc3lxhtvZOjQocyZM4czIrVgjY3iuB1GB3GmIydXdqNd6ysY7XfVEfUNYkKfknJqJxI1YsQILrvssi6NhbOysmhziLlHvKUESVIYGL+L6pp2O19Dfd9CPar27WXhfbez+LknqFy7koyMg8TbxG+ztvZT1q1bjcPh0MZV4w+D3sDkn51Hc/MaKipeA2BAxm/xNorf8vJ37mLPyr6lDvYFe75bjqO+DmtcPONPPbPL699++y2NjY3Y7XZ2J6xmwaRGxl5+kLwFVcQPaQTJjaQkM2TIX5DNOjxtHloaM1FViDU5aXEXU+Wq4vFNj9HsWgWAqTkNc10FWz/YA+5RgML2rbfx9gO34y4rAkUhJOtYv+QLQKiP27ZfzbZtv8Dl2UE4rKOyciRpqa8QHzfpmJ2L/wb6ydX/OLY3bAdgfOp4bVXqv0GuooEW+ngTQSVIMNILQZ8hHkwdH/jRVfaDLf22wB8CLRRAL1aTAnKgR+XKZBJ/j/aliCpX4WYfJ6afSJY9C2fAyZKSI0+M6mRVyo5BMuiQbWKVNXQcrIHhNn/nJLhjWHcVtQU6JUEAzGYzNpuwBamqitfrZUCMmETV6sXkIWoLDLcFxHUuiaAAAPeGY6saR6OyK/QN4ICtW7dqhcfDE4dTZRRWnFDjj7eesWPNleIOaosEvaGjCuFa3XMYjuINac10oyENhgwbkkFG9YV/8j3AtEWMnM7kSpIlTLnib/5erIH+A60AWCI1Vh1hHpYAElAX4MXV/+Szws+015wrK1H9YQzpNixjhK07WqflPYw1MFjlQmkLIBl1Wj1mb7COTyXtjomandM8PIHKcWJxLsEsJswjE0eiSCpPx79Bwq/ysU1KQ9KL6Y15VBLGATEifGN517okNajQ9OZeQo1edPEmkq8ahWzqTPg61lz1RbmCdmtgeXk52THZjEwcSUAJ8MSmJ/r0/kBZGWVXXEn1/ffj79B3qv6ZZyiLF+Rk0KBBWK1Wxo0bR25uLsFgkK+++qrHfa5atYqdO3cC0JQkass6KleD44VVq6i1iIkTRU3SwYMHtdTD7hAKhfj6a2Fjmzx5MldeeWWnBsFTp07lggsu0FpYHC25gvZQiwfXPMi1S6/lN9/+hofWPsQXhZ/Q1PQdAKkpp/ZpX7Isk5Y2i0DAjMEQYPiI1WSZtwMwZPC9SJIel3s/Hk/vNUE7li3m/Yf/D3erWFSo2vU9eQO3R16HYLCZXbvfBeDss8/GLEuoegOW0ZOwJpjZW3AvAFlZlzFy4rWMnHAdADHZLSx5/mm++udTBH0/LJAoFAyy/mPhRDnh3IswmMRiqtvtpqSkhNWrV7NunXAWTTx5IkPYzDCzgixBTUDiYGUCRV/msPONVBbuf4NP0j5hf9x+/LF6gnpBeB+bdAV3T76bfL8BkyWIEpKYcOE9zL/uFgB2fRAk4NUTUmuw5dQSSDehM4h7/boVK/B7PFRUvE5z8yok9NQXpLB507mUlE5io7LvmCQY/zfRT67+h6GqKjvqReHquJRxnW6cxxsdlauO6oc5MxIT3I1ydaDlwH+lHux/FZpy1aHPVXdJgQB2u5ggBAIBEceeYAJZTDQkd5iLh18MwDv73jni7yRY4xZWJbsBXZxQyHQJx6/uKtTY+cHjLzp2yXxRW6BHFuO2WCxarw4Q1sCoLbAC0Sco2s/Ld1A8bA2ZdmJmZ4MsESh3Eqw9dsEW0aTAFrn997Rpk7CTDI4frJErxRn8UabjKd6QdgxSpN4neBjlMVDlEmqVDEjCttbRWtgRvoMtoIA+xaIlYko6GUN25Pr/CVkDfYUtuNZWowTaJxntYRZdJ/xa3VUPsfNhZ0C7Fk1D4ru8rrMbMUQUscnufC0YKdTqx7VWXOuxp+YiRZoOR5Uu/4GWXhVB794mbXvJ0LcpiD7RTMr1Y0m5eRxJV+ZrrTuirTyyY7KxGWwElAAljs6TYUmSiDtjIADuTbWdrpWwM0DTfwoIlLUhmXUkXzMKXWzXOPNOTYQNNlRVRT1MfVNUuaquriYcDvOHE/+ALMksLlnMui2fUXXnnZRddTXBbgr1ww4HFTfehGfTJhwffUzxmT+j4pZbaf3oY1rfe5+KCHHLHzVKO8YzzzwTWZbZv38/mzdv7lIrtWbNGlasEErIvHnzKNcJotmdLbC8rZz4xHhyc3MPG2yxadMmWlpasNvtnHLKKeh0XZXIMWPGcNkVl7Enfg9VtipijUdXPzM9YzoANe4aNtVuYnn5cj46+BELt9xPOOwhrIvDZB3e5/0NHTpcswampIga40EDf0Nq0mWEneK81PegXoUCAb5+6e8s//fzKOEQw6bNZPqFPydzSgN6fQCXK4HdjakAJCcdQIlVaNXVIJeK8oeGQJgdO+7D76/FYslj6JDfAZA14GwAYjJ96M0Ke7//hm9ef7nPx+RqaaZgzUraGsS9X1VVtn7zPF5PDfbEJEbOns8XX3zBE088wRNPPMEbb7zB8uXLUVWVcePGsdv7AeOsYRQkBox8kbfcQ/in4uegYiEcULF+XYZBkrn4ZxfzyO2PMGLAhWK8oTKuGnUVl1pFQEddo5lfrruD55QPWTummZBfpmGb+L3GTW7gvXEFbIwXKdJuSwxrP36Liso3AWjdPY6SgnEEAlYqLVU8u+NZ9jbt7fM5+DGgn1z9D6PcWU6LvwWjbCQ/KV/rE3G8lStVUTuTq6CYLOklPaasyAO/g3I1MHYgelmPK+j6r9SD/a8iSq46NhG26Hu2BUbrrlwuF5JO1tQrf1kb5w05D6NspKC5gF2Nu7rdR09otwTGaDaIaD3IcSFXzeL6iqpj/qLWY2b3CrmFMuQjkrxoFhP0KDl1uVyaLbBIEZOV6DFG663MwxLQxRix5Ef6Yx1D9SqqXLXJ7b+nnTt34vV6yYvNw63z4jYK8nk0dknvvmaa3tp73Gq2oqqVHGvEGOmtdLjPiqpWljEpmEdG6t/WdK9eReuFoqpVFFrd1U+k35VrYw2Nr+ymdVERdU9twbOrkbArQLjFD1JXWyB0SAwsa+t2gcQXsVMasuzo7N33RzIPE4RpimsUVVVltH5RTN1Tm1GDCsYBMZpaBWDMiUWy6EWvvYqeSatGrvKPLDFO0kmYBsQi6WSa/YJcRZUrWZK1EJfuAg9MeXGiJYQKjiWlqGEV55oqap/cLJIkdRJJv8hHn2ql9dNPqbzj1zi//VY7b1FbYFgKYvv8ew6eOIPSn1+G2ktEdGJiIlarlXA4THV1NaOSRvGLQRdzwWoF61W/o23xV3g2bKDs8l8QKCvD4/FQVlaGEghQ+etfEygpQZ+RgX2+SHB1rVhBzf3347TZhCVQkhgxYoT2eampqZx44okAfPHFF/zrX//i4MGDqKrKunXrWLZsGQAnn3wyM2fO1GLho/VgICLjbQYbITVEubOcyZMnA0IR7y4sw+v1snKlaNsxd+5czW7eHSzxJuTWKuZuSaF2x+6jWki9ePjFfHL2J7y04CWeOOkJHjjhAa4dfS1T7ILQrWl1c8bHZ/DhgQ/7tL/BgwfT0JCn/b9bP5W8vFv47o1/UbVV3PPr6rpXAr987nF2f/s1kiQz67Kr+dmv72PUKWNIGtkKQFHRFMJ10wBITKpkY8w3vL3wMXRuB7GSSmxcNY62ZUiSjlH5f0Ons3Kw5SDvFq3AahsGksKcm8R3X7D6W7zOw9+rVFVl0ZOPsvi5J/jXrdfyxj038O2X5+I0PMfwC4sZdcaJvLFwIZs3b8btFs+MhIQEhg8fzrx585g9fybJbkHATQmnMjRjAW+e/iaD4wfzbX41XmOYBJeRe30Xcd7Q8wBISpoNQHPzGlwtDeh0YvG+VJ9Is6+ZjbUbOZDjpHSWlTbXEFTVTJwtzAPjzmHG5JkEJB+qwUhx9UcEg03oSKJ4nZtQnLi3VForuSL/CsakjOnTd/pjgf7wm/Tjp4povdWo5FEYdUZNuSpxlKCoSrcpcscCijsobFoS6OKMeF2RxoF6S/sEqsGDGgwjGXQYdAYGxQ3iQMsBDrQcINOe2dvu+9EDwtFAC7W9z1VPypUkSdjtdlpaWnC5XCQmJmLJT8K5shLP9gaSx+Zz2sDTWFS0iPf2v8fYlLHd7qc7tIdZtK+mR0MtjoctMFpvZRmdJJqhekIE6zwYMw6f6tUbVFVFcQWRAJ0hkqgUUazsdjsNDQ243W4GWgdilI3URW2BDj+qouI/2E6uAGwnZODd3YRnaz1xpw/ssdbkSBCO9OFyST6it/NgMMj27dvJy8sDoNrYwNBADqFGb7eT8J6gKiqti4oIN/sIVLhIuXEs+oSusf6Hou27CnwFzSRflY9sNfS6bbTeypBqRZ9kxl/sINTgJaSE+KL4C2ZlzSLJ0j4JD7X48EbqhGJOykb1h/HtbcK9pZ7YU/LQ2do/T1VUfAci9VYjOtdbGAdEEwOPXLlSwwqoaLaz4w3n95U4Fgs1RjLpCLf6af5PAfoUcS3qUyxayl9HGLJjQCehROypxszO6la0Nsoc6eXUHcKDjbACTnCN4YRtY3EhSKwhw0bChcM61bZIOgnzsAS8Oxrw7W/WyF1HhJq8hOo8IINl+JEnxkXR7I2QK1P7PkYmjWRr/VYKmgo4e/DZXd4Td/pAfPua8e1tou7pLRqJN2TbSThnCJLRS+WNN+GKkAXn0qWYR40i+ZabNeXqvDUB5J2vEAbCLS24vl9FzNyTux2jJEkMGDCAffv2UVFRQWJJCec8/C3hKqEoNY/MJM1joNLnZdVf/kplZgZhRWGGopK9bj2y1UrOC89jHjECf3ExTa+8gmPR51QNjYY1DNQsylGcfPLJ6PV61q5dS01NDf/5z39IS0ujrk7UXp500knMnj0bh9+hOUqiSYbRMQ+OG8zOxp0UthYyb+Q8rFarFmwxfHhnVej777/H5/ORmpqq1WgdCr/Hw/alX7Dxi4+Y6hIT5kVPPkrGsBGc9POryc4f3e37ejqnQxKGaC1cABQlxKrVCwmFoFxJot5bzx/X/ZEUSwqzc2b3uj+bzUZszESqq8pQFB0JEy6hYs8u9n7/DXpzDNkza3G59+D1VmCx5Gjvqy08QOGm9cg6Hefd+3vyxk9CVRUOHnwYSQJHWQptDnFenc5EYmKauThooqlC3D/zTshFH1wMgNl0KnFx43EFXNy0/CbqPHXcPWg42YBkKyJ14GDqS4rY/d1yppx1fq/HU7ZzGzWF+5F1OgwxPpKmrkK1imvXYA3jDPyTltYFWK1pnHPOOQwcOLATIf50062kGcJ4FB2njvozAKnWVF4/7XV+v/b3+E0hLF+WU/btaspO3E7u2PHExIzGYEgiGGxi++pnsKaKe/otp79OXOGX2Aw2Ts07lSy7sMYXFT1JadkL5Cn7uXDaBzxe8TjevW7SRgqyX7c9HsVgRTGYCEthrOlW7ph4R+8Xxo8Q/crV/zC0equU8QDkxORglI0iXMJ1/Jr2RlUr2W5E0snaTdyityDHGIXCoER6IUUQXXXsLtQiUO3q0fbTj3ZE64P8kfq23mquoF19cTrFBNM6QVgYfPubUTxBzhsiVqZWV60+olXGqHJl6DCR18WLh0q49dg3sw1HJ0mpVox5wst/LOquVH84moyLJRK/HFWuopMal8uFLMnkxORQbxCT1XBbgEClE8UTQjLptAAF0+B4dIlmVH8Y745j0yQyGmjhizSOjn6nmzZtIjdW2DOK9SJa+khDLQKlDtFMFfGbbvz3LsJtgV7fE24L0LasjEBZW6ekxJ4QjMSw61Ms6JNFPWao0cviksU8uOZB/rzhz522d62uAkXY2IxZdowDYzFk2SGkdKlnC1a7UJxBJKOMKa9zjYcxUo8UqvegHEHIiuIJUvfcNmoe36QR2+MFVVVxLC3ViFXM7Gwy7j+BmHkDQC9p4R89EWbZqMMSaeDt2Vrf6TVVVfEViu/HNKRnklMT20SrzolBNWBATyBLJvmaUaTePgFDatdgh6g1sKeEwahqZRoYd1ji3Rta/GL/HYn34aK6DalWbFOEShNq9CJb9cSfN4SUm8bh3foNxWedhWvlSiSDgdgzz0SyWvHt2UPlzbfgiIRApLUEkeLjsEwWxfWt7/WeqBqtuyrdtYuKG28iXFVFODmep8+R+fN8E58sOJnvTj6ZsvQ0whEbX0FLM0gSmX97EnNEmTINGkTmo48y9PuV1M0Saa75+fldPk+n0zFnzhzuuOMOpk2bhk6n04jVzJkzOflkQQSjDpFEc2KXPojROPbi1mL0en2PwRYHd2xj3dq1AEwZM1qrqVJVFb+/gerypaz66Bn+des1rH73TQIuN23WINWDQW80UXNgH+/98bd8/NeHaGs8+vtha+tGQiEHBkMiL561nIuHCUv7Xzf+tVMIS08YMmQoRUVTKSmZRIw5huX//icAFlsGrhpxjR9qDdz4mVDGRsyYTd54cS3U1n6Ko20bOp2VMeMeQQqIz66vFZbUlKRaZFWiJMPN+uAr2GzNBINGNm5Mx+fz8dSWp7Q0yXcrRPucpqbvGbtgPgA7l32FephY/A2fvE/YbCVxdibDL6rEkuQnFLRQuv0EPJ44jEY3E8Z/y9VXn8Pw4cM7ESu/vwFjmwgFCSachbFDomO8OZ7n5j7HI1c+z7gFolHykheexutyIkkySUknAeDiEyQJ9AwgIWYQt024jWtHX6sRK4Ds7KuQZSNtbdtwOLZwy1m3kJhSjsXmIuTXUb1Fj5ISaV1grePROY/2uEj8Y0Y/ufofRlS5Gpc6DgCdrGNgnPihF7YcP2tg1BYVVSs8IUGMLAYLkiRhiKhXweoOoRY9xLGHnQEaXthBw0s7e21m2Y/2KHZ/WEz6grqe0wKhs7UNwJBuw5BuhbCKZ3cjo5NHo5N0NPua+xwhrPhC2opwd8rVcbEFRpQrXbIF8+BjR66iiwQe2YddJyawHZUrQLNW5MTm0Kx3oEqqOH+RyaxpcDySTtxmJVnSmrS6Nh6bnlfhSL1StHH05MmTMZlMNDc301bdhlVv1RIDj9Ta594s3mcemYgu0UyoyUfDK7t6jdp2bajRwkX6siASDZQwpFo1JSbU4NXqQtdVr9MKmRVPEHekj1nMSaKIWpIkYmaKB7drXTVqSEw+AlUumt4SExTTkIQuKpPObkQXqcHqzcLWEWpYoemtAkJ1HpS2QLfhCFEo3tAPsqaqqorj82Ktj1TsaXma2hm3IJf030wSNjdZwjI6ucf9WCeJSYpnW32nSPZQnUcQT4OMKa/n+pcqVzXPZLzFl/Hf85vcJ1g1txDz8MROilVHREMwglWubom41qD3CC2BhyJac9VJuUocCYgFup4Wg0x5AcKOIgIl39H2xb1U33E+hXNmU33fb1Ha2jCPHs3ATz4m629PMmTFcpJ+9Stkq5VgZFK7PS9E9pefkvHIIwC4vv+eYFXPC5XRuquKqipUVcU+bx75S5djnb2ASQ2Tcbu8mIxGhjc1c9J3K0FVaU5KwnLXncSc3FURa1NVauvrkSSJkSNH9vi5NpuN0047jdtvv53p06dz2mmnMW/evPa0OpcgVx0tgVEMjovUZjvEb7BjsMWrr77Kzp07Cfj9fPbBByBJ6FwOVr/0F756+1zWrz2PlSsnsHrNNAoKb8YX8w909gYSMrMZcOmpfHJSNbUz4/jlc/9i3IIzkHU6SrZtZukLT/d4LIdDtHFwSvJ8THord06+k1RrKpWuSl7d/eph3z80ogQqKLSs20FLTRW2+AQuffgxXJXiOq0o+0jbvqmqgoObRPjDlLMvAMDrreJgoVgIysu7laETF5CZIt7but+KqkhYU3yc9dAtHDxRZZpZ3MeaGk+gtTXIO5+/wwcHPhDnO3UilUGJNkWPonhJG6nHZLXRWldD2a7tPR5H5b49lBUXET8dsod+jSz7cDhS2LLlDCrahrFr53zC4SQMRgdFxbfiD3ROrVy/+z5MkkJlQMeC0X/o8XNm/+KXJGRk4mpu4j+/+zVr3n8LkyQsewabeGZmDfhZj+83mVJITxcKXFn5y9jMNoYPF/VuNZVDCIdkHLHiWTA6fzQjk3q+zn/M6CdX/6NoC7RpE5RxKeO0v2uhFo7jF2oRLejXR8IMosqVVS9WgQwZkWLymu5DLTrCu7cJNaiguIOdIq770RWKO4iKij8UIVdykBhjzzawmBjxWpRcAVjGC/XKs60Bs96sXS97mrpv9HcoAlUuUAWZ6ljHoT9O5EpVVa3HlT7JgimSPuYvdvxgMu4vEcEYB8xl2KSelSuAATEDUCQFj1mce892Qa7Mh1ifbJPTQCcRrHAS6BDqcrSIqidhxLHGx8drK81R9ao9MbArufIdaOl2Eqz4Q3h3iYdvzJwcUq4bgy7WSKjOQ+Oru7sNx1APUY/6EqsetQXqU6wYkiPkqsmrTf6cQSf7WoQS4dpQgxpQMKTbMHWwslnGJCPHGlGcQTw7GnBvrqP+he2EW/3ok8zER8IMDoUpoij2pe5KVVVaPyvCX+yACFFzb6jRUjE7wrOjgepH1lP/3FatrulI4Sto1kIj4s8ZTOycnE6v65MsJF81iqyHT8TSC1ExD0tAthtQ3MFOalJUVTQNiuvV3ljlqmJDzC7+kfEu+6wlh70PdAzBiFoyowi7g1q4Rm9j7gtafGL8iZb2mq9B8YMwyAacQWe3zoxQSwvVd9+O59vH8O94G7WtkXBrK+GGRjAYSPn1r8l79x1MQ4TlTJ+QQOpddzJ4xXLCKYLALpkiYUtMwzRwINZp00BVafmw5/qejIwM9LKMT6fDGR9P2m/vQ7bZmBmciYxMo6mRaT+fzsV/+TODsrJIaRAKTk0kqOJQ7N0rivrz8vK6WAK7Q1xcHKeeeirD8wawbcnnWqJdrUdM7juGWUQRvedHF2CTk5OZNWsWkiRRXl7Oxx9/zJNPPIFLbwRVZWRWKrnzqjGm78Lt20lYcaIqEPLqkPUqI85t5pI/3Yd+dDaqDHHGOOwJicy/7mau+OuzSLJM+e6dNJaXirodV99asqiqSjDYRkOjqCVLSRFx9DaDjXum3APAK7teocJZ0et+MjMzKU4qZr99N2VfC0vonKt+RWxyKpnZZwHgDx3E5xP3pE2ffQSqyuDJ00jOySUc9rFr100Egy3ExIxiQM7VAFxx4y3MmTSeX9z0W1JShfokGbZz5+B84nTQGJIZMv5XAJTtKSPJl8SFwy7kn/P+Sbotg+2RW0tx6WcMnTEHgB3LFvd4HN9/9D72KUYGDxMqq163gNiYhxg1agYjRozglFMuZubMjzGZMvB4itm48Uy2bL2MXbtvo6Dgd4Qc4tibY04jxtTzgovBbOaMW+/GZLPhqK9j/Ufv8sVf3kXtIKpFj7cn5A64DpBobFxBVfU76OVyFEWmqn4MdQPiMKk2VEnlurnX9bqfHzP6ydX/KHY17EJFJScmh2RL+8rm0ITjH2rRXY8rQAtXMHanXEXi2Mud5Z3SBX0RGwm0N4r9f4kfY+JaFIonqCkYIMhVdkx2j9sfqlwBWMeLWOVAiYNQq5/8JGE96WtST3f1VtBBuXIGem1qeqRQnEHUoAKyIHCGTDuSWYfqD3dKpDwaRFMHd9j2Y1YFqTpUuYqeu2ioRWuk15XqE2qLeWhncqWzG7WJpacHa6CqqDS9s4/m9/cfVv2IBlpIqriV22w2pkyZAsCBAwcYaBxIVQflquOKvnd3I42v7qbh5Z3iHHaAd2cjalBBn2LBOCAGfaKZ5OvGINsMBKtcNL+zr4s64NnRINIVI6LG4ZQrNagQitgODalWdAlm0EmoQQVfc/t3t7FmI2pIwbVGkA37SVmda330MvZIA9zWRUW0fHgAQirmEYmk3joBfXIPoS7RRrvlhydXrrXVuDfWggRJl40QyouKZtmLItjgoeWjg6CoBGs9NP57F40L9x7RvUtVVdq+KdeO1T695xrUw9V9SToZa3TBZGu7+hxNsuzNEghoJGV0kqiL2dN4+EWWaC2Vb19ncuUraAZV1Gv1pXavN3SnXBlkg5Z2V9Bc0Gl7NRSi6jd3EqyuxjBgAIO/Xsrg5csY9Pki8j74gKHfrCD5xhuQ9F1r1/QJCQQj4T96o1679hIuEfaz1g8/RA12r+bq9XqSPOJ34F4wH2NODk6nk4KdYnx7E/ayomoFOrud3NdfY+ypIkZ8377urY179ojz350lsDs0VVaw+B9/47Vf38i3r7/MOw/eTUXRV4SaFyOjdkuuokpBkaNIC72YPXsat956FXPmzMFusxGIBHnkpqUw/iyZuFwXqqKjfGU6Bz4ahHfPtYwa/B4xMaNQcLJz1/U4vWJfHWPYkwfkMWSKCH3Ytv6PbNt+JRs3nUVZ2Uuoaud7kqoq1NR8xOYtF7FmzSy+/S6f71dNwO+vRQ0bWPXqtyx98TnWvLeQtP0h5sgTCAT9PL7x8U77cTY3sm3J53zz2ktsXfwZpTu2UmzcS3axAyUUJm/cRIZPnwXAxAWX4aoV94/Sg+/T1thAwepvAZh6zoWoqsq+fffjdO3BYEhkzOgXkGXxrDNbLMw561wyh44gM0MoXDU1H2N0fgfAZ6163q57H322uOamNk/l9nG3YzfaeWj6Q+z1iMVJR9v37HN6UHU6ijZvxNnUtU9a0a4dNJrLGDpyg/gcOZ+lUgJLDSv4NvZb1qauxZHqwGrJZuKEhRiNqQQCjbS2bqC+frHW22uDW8eZ+bf2dDlpSB8yjOv/+Rpn3HoXAydMRg0ZcdeJ82TQJxIb03v4hNU6UCPD+/f/HoBw+ASCQQsWmyD3uQNzsVq6Wo9/KugPtPgfxaH1VlFokv9xjGM/1BZ4KLkyRIIGgjVuVEVFkiWSLckkmkW6THFrMaOSR6H4w/g62LtCTV4Y2vtk4HhB8QRpeqsAf1kbydeMwnyYScn/CyiekBbDrsgKiqRoTRe7Q3fkSh9vxjgwlkBJG94d9YxKG8WnhZ/2XbmqEBNVwyF1ILLdAHoJQiphR0CLxf6hiE5adfFmbaJpGhiHr6AZX1Frl/4/fYWqqJq1cIf1ACeGhfXs0LTAqC1Q63WlayILsZihT7Z0e5yW0cl4dzWKhYPTu6oqgVKHVpNlHpagTY4PheIPQ0BMQPSKmPxZrVaSk5MZPHgwRUVFJDUkUWNoREFF9odRnEEtatoZISuhRi9t31UQtyBX27d7i5iIWyelaZNJQ6qV5GtHU//Cdnz7W/BsqtNsjqqqakqLbWo67g21gsyF1U7NWDsi1OQVwRBmHXKMAUmS0CeaCTV4kVvCEMn72Fi7kUvCP0NxBdHFGbGOS+myL/vUdJwrylH9YZAgdt4AYuYO0GLCu0PHUIvofag7+PY34/iiGBChCJb8JPSpVhGOsL8F34EWzMMSUAJhmv9TgBoIYxwYhyHdintDDb49TdTuaxZ2On3kMyQJfZKZmDk5XYJNfAdaCFa6kAyyZn/8IbBOSsO1ugpvQTNhdxDZqMNfEun9NSy+1/dWukQy44K8Bexu2k25sxyHv/c+RebhibQtL8d3sJVQo1cjt0ebEngowkqYVn8r0LnmCiA/KZ+C5gL2Nu1lQe4C7e/1TzyJZ/16JKuVnH/+A2PErtdXRNMCTcb22o+YefPQJSURbmjE+c23xJ56Spf3ebZuJbG4mLr8fBwRG9+aNWsIh8MkpCfQYG7gu8rvCCpBDAYDY2bPZsW2bZSVleFyubT7DEBlZSU1NTWHtQQCtDXWs/Kt1ziwfrVotgSYrDbammrYu//XZJpDnGQ3dGsLTLYkMz5lPNsbtrOifAWnpWazZ+/dhEJOBubdStv2EHsrC7Fm5DD3zBQKi4Slb/ToJ5k6fjo6vR5bvHg+pvj/xabNF+DxFBPvfwcdapdrZ+JpZ9PYshg5WRBOVQ1TWPQ4La0byR/5BEZjIk5nAfsP/AGHY0uX8YYDOuq2xVO/fWunv+cBmfocahP38H7dUwy053Jw41pqDnZVxs5DnAedwcC8X96s3fPi0zMwhMYAG6ks/4iaLRaUcJic/DFkDhtBecVr1NZ9iiTpGD36OSyWrC77BkhKmoPBkEgwKBYFTPYxFFSWsqviGwyygVPkU7D6rWzfsJ2TTz6ZiYkTGVV7LsHEDzEa/YTVIsLDxsG+bexcsYQZF/9C27fb7Wbx8pcZMXYtsqyyw23m9eYSVEo7jWFl5UpenP8i0zOnM33aMtradhAINhMMNLOy7At2Ne6kyTRZcxEdDkaLlZGzTmbkrJPxOtvYtfnPONUPSE09FakPYWm5A66noWEpoAISY8bcyYb1nyNHFgonjp3Yp3H8WNGvXP0EEaz34C9rI9Ti02oMDkW03mp86vhOf4+u7JU4So5bU7awQzyINOUq2Jlc6ZOtoJdRA2GtYB7arYHR7uu+Ay0Qal8dP7Sf0X8LoVY/9S/tFJagsErb0rL/5/24Dv3eVUVF8QTx0x7DDpAV0/3NHronV0D7Sve2Bk25KmgqOOwxq4qKL6L2mAZ2foBKkoT+OIRatFsC20mMZg38AXVXwVo3iieEV/ZzwFKKFBIP26hydagtMCc20jBUarcjRVMCD4V5eALoRCBBd+qOZ1f7yqTj67Ief+NKxBLolXwYIuQqOq6pU6cC4C/3E0ahxSwUtWgz4WCtm0BJez8w53cVWix6sNFLoLQNJLBN7EzsjFl24k7JA6D1i2JNeQqUtRGscoFeJnZBruhfFFa1mPzuEOyQFKhF9kcm4ra2dkvplroteArEObGOT9Vq2DpCthqIOy0PfZqVpKtGETs/t1diBaLGUDLIInHwYPcBDMFaN01v7wNVkBT7LPF7MiRbsE8Xq/6OxcWoiqiRCtZ6kO0Gkn4+goRzhpB2+0TRQyqs4tvbhHdno/i3owHnNxW0ftrZQaCqKs4VQrWynZDRY0T6kcCYYRMLWmEV784G/KUOCCnIsUb03YRSdESVU1zP+Un52kLN4VRsQ5ZdC26pfXoLrV+VEHYGtPTMH2oJdAQcKBFV49CJ+qhkYafrqLA5Fi2i+Y03AMj8618wRWps+opwOIwSUdujzdcBJKOR+AuEItFTsEXjP/5BcqO4diubmnC5XFowxGnzTiPBnIDD72BzrfhbfHw8mZlCqTxUvfruu+8AGDduXCfS1R2+fPYJDqxbBarKkCnT+MVfnuGap18kZ6oJvVk8I06LDZJu7t5auCB3ATpUmipfZvuOawkGm1HVIMUlTyNnLiTOVMdZl82guOQhAHJzbyI9/Wxik1M0YiXOVxrjx72CTmfHFq7i54kB4g2drzljcjUDZgtVyxg8iREj/owsm2hq+o6Nm85i87ob2bjpLByOLeh0VgYPupvJkz5iSPqrFPxnPLteG4YxMIcF19/GiRdfzrgFZzBo0lTMMbEYQzID6q1UfPYN3//nNY1YZQ4byajTTkMdmkyrPUhYEs+2GZdeQXxaZ8I5YoKw7mGuYs/aLwCYeu5FNLeso7DwLwAMGfI7EhOm9/h9yLKB9LRogqXE2BGP8Iv8KwBRGy3ni3vaqlWrKC0t5Y033gCHjqYWcY/JHbQZyerAlzWINUs+4t0971DqKKWgoIA333iYofnfoNOFKXIaebNZ4oSM6dw16S5+O/W3PDjtQeYPmI+iKtzz/T1UOivR6+0kJs4gPe0sVruNPFa0j8UOIz/Pv7bHY+gNlphYpsx5lLFjXmBIpF/X4RAXN574OOGySElZQFbmRG3RQJblLsmUPzX0K1c/MQQbPNQ9vQU6zHNlmwHjgBiSLhuJZJAJK2F2Nogu7B3rrUBMts06M76wj0pXpZYodizRY6BFhFxJOglDupVgpYtAjUubUA1LGMb6mvVa3VXUEihbRe+UUPN/n1wFa900vrqbcFsAOcaI4g0SqHDiL3Zgjkzi/9vwFjTR/PY+bFPTiT9LKJGqLwQqBORoryvxHfRFuYqmBUZhHZNM66IigrVuBgVGdQq16G6lM4pglQvVG0Iy67pNMNPFmwg1egm1+jlW2T/RMItojy4A85B4HECgtA01pBxVZHbUErjLcpCwpBCONG7tTrlSFIUMWwZ6SU+dvt3GauqBXMlmPabB8fgPtODd29QpdU1VVLy7I+RKJxFu9uFaX6OFNnRE1BLYoG/VVvui5Gro0KHY7XZcLhcJgQQqDbUk+WIJNnoxDYrHtV7UD1hGJaEEFfwHWmj9tJDk68bgiahW5mEJ6GK7flP2mVl49zYRKG2j+YMDpPxqjGbZs01IRWc3ok+xEKx2E6r3YEjpfgLfsd4qCn2KFQqayfCnoJf02Iw2nD4nnoONyIhwjZ5gn5GFfUbPiwmHQtJJWCek4t5YS/M7+0m9ZVynsYYcfhpf243qD2PMiyXhvCGd7Iix8wbg3lJPsNZD01sF4n4lQeKlwzV10JBuI/mXo/EXtYoaNFUQKNUXpm15GZ6t9ZiHJmhJnf7CVhEPrz82qlUU1klpOL4oxr2lDtOgeED8TnoKpgBQVIVql/hes+xZjE4eTaWrkj1Ne5ie2fNEUpIlkq8dTeuiIvwHWnCtrMS9tho1qKCLN2mBRkeLaL1VnCkOg9w5cXBUUoRcNe1BVVU869dT86CwHSXddCOxp3RVlw6HqGoFYDZ1VqLjL76Ipn/9C/fatQTKyjDmtj9PPVu24F67jqTIgkxTUxPLly8nFAqRlZXFsCHDmNswl48OfsSK8hXaOR05ciTV1dUUFBRofaYqKyspLCxEkiRmzZrV63hrSjdQfXAvkqzj8kefIm1Qe2z5gOlhXG5QwmDWgVryAQy+sMs+TkrPJ5TqJ1cnlMvsrCuw20azZ9cDWJL9DDu/hPKGB1GUAMnJ8xk86M4u+3AH3exo2EGls5JW08kMdH/OZFsYpfVFCgpqSE8/D1DYs/cOJFmlaX8cjj0SMxZcSGzsOHbvvhWPpwQ/gni1lSWSEnsNqRMuo7W2mkWP/4OA109O/hjOu+8PGMydvxtVUSgv3Muf3r+LmBpBKOsyw9jz83CkWlhS+ibeoV4YCpNSJnL7yJuYOHBal+MYOPpk9n8ahzHOwZCz9iPr9JS3XU9ouxNVDZOedi452Vf3+p0AZGdfQX3DEtLSziI2dgw3jhvEdxXfEQgHuPvMu1kSWMKBAwd4/fXXAXEvTx1+CaHmx4mPbWLipC+prR1M9Y5svvj0X1Qkvceg1HqGjRD36+ZmM//y6rhlwm38cswvO7XaOWfIOVz91dXsbtrNr7/9NQvPWIhFb2FR0SItkfX6sdczL3feYY+jJ0iSTrP69RUjRjxKWfm/GJh3GwCzZ8+msLCQ/Px8bSHzp4p+5eonhkC5UxArnST+IYIMfAXNeHYKK1FhayGekAebwaYpVVHIknxcEwNVRSXsjAZadLYFWjusWEV7rvSUGKiGVXz7hYRuO0Gs3vy3a678xQ7qX9xBuC2APtVC6s3jsE0W5CKa4vXfRrDeQ/O7+1GDCu5NtSiRSb/W40ofSUuTA1j0FhLNvUxGDyEIUchWg6a6hHe1adfQ4eottKa5g+O7tYLpjkMj4Y5hFlHoU63INgNqUNFi4Y8UmiXQth+7wY7fJ8Z8qHKlqiperxe9rCcrJosGfUQB0UmYBvVsnbKMEqv3vj1Nnf4eKG0TKW5mPfE/E5HIzm/Ku631iyYF1uvEWA0Gg9YYWpZlUlPFhN0WtFGiFwpEqNGL4gtpaYa26ZkknDMY9DL+IgeerfUauYomzR0KSZZIvGgYklEmUOLA8VUJ3j2CENpniFX3qCISjVrvDtFoeENq+3cXDbXIDqSSZktjStoURnoHIvvEIosxp+dC66NB/FmDMQ6IQfWFaHx9j5aEqPhCNL22W1hYUywkX5nfhaTLVgOx84S9LLoQFDN3QBfLsCRJmIckYJ+eif3ETGJmZBE7b4D23pZPCrWwkbaIamWfmq4RtGMB6/gUkCWClS6t9qonZTWKRm8jASWALMmk29I14tKX+suGvz2Ca8kjJFyUhz7ZotX0WfKTeiV0fUF39VZRDI0fikE2EHY4KPztXZRfcy2q34999mxSbrvtqD4v2uMqTBi7qbNiZMzOxjZTRKO3fvBBp9ca/ykivdN+9jOSk4VVePv27YCYREqSxLwBYjK7onyFpsZF66lKSkrwesV18f333wMwduxYkpJ6Vv6qaz5kb/FlDJhTw8DxkzoRK0fbDlzuPUiSkS2bItZaaTNL/v07fB3cC80t6yjbcx25JgWPAs7EXzB40P3s/LSMgnfzcJYngaQSCrVhsw1jVP7futjAGr2NnPvZudyw7AYeWf8If9+/gjebjDSHJGTVT3XN+2zd9nO2brscRQmQlDiXhi3DaGuop3jLJmLsIxiU/hwtB5Nx11ooXTqY4iVpbHh/Mf+6+Ro+/NODBLxeckaN7ZZYAUiyTO6w0dx+w5M0n5XD6hOd7MxuYm3bFj4p/ARvyEt+Uj4vzX+J105/vVtiBeL3mxR/BgAGWwid2Ucw2IKqhoiLm8yIEX/q0zVtteYxc8Yahg75LSCCNz4++2M+P+9zEi2JnHnmmVo0ekxMDFdffTULJtzAidOWEZMwB0lSycgoZPyCVVwxpZqJw3YRH1+HqoKjzM7HLam8sOBVfjX2V116mJp0Jp4++WkSzYnsb9nPH9b8geVly3lwzYMAXDbiMm4df/haq2MNm20w+SP/qtkp09LSuPfeeznnnHP+62M51uhXrn5iiFppbFPTiT97MIonhGtVJc7vKnGtr8E2KU2z1Y1IHIFO7tqodEj8EAqaC0STwB+wUtEdws4AKIAsIcd0TguMKlfQue4qiuGJQgY+0HIAf2kriieEbNVjnZiK89sKQk2+XmsjjulxuIM0vrFHrFrnxmoNUWNOysa9sUasMFc4j7qm52igeII0vblX1JUAakDBt78Z65gUFE+kcbBJgWB7mEVvN/2OBMHj8XSymlgnpArCvr2e/Jn57G/Zz56mPb1eL1qRfA+TtuMRx96uXLU/XCVZEBvvrkb8ha1dehwdDmpY1ZICd9j2k25N1yZYUeVKp9NhsVjwer24XC5sNhvZMdnssm7HZw+TPLZrLU0UB1oOcO/Bu/gH9xKocBJu82sKUVS1suQnYpuagWttNaEGL86VlcSdmtdpP1FbYIuuDcJ0SQ9LSBDfQ5qU1h5q0eAVsdyBMPpUC6bBcUiSROy8HNqWltHy8UEIq8hWfa/2LX2ShbgzBtH6aSGuVYK4mQbFYUgXYzCkWPHSrk51h+6VK3GPyAqkkWZNY2rGVGo2i32ahiX0WL91tJAMMklX5FP//HbCTT6a3tpL8tWjaVq4V1j8YgwkXzO6x55M9ukZuNZXE27yYRoSrxGmviBm7gB8RQ4CJQ6a3tlH3Gl5wo6pk4iZfexUKxBBKubhCfgKmkXoCKJXWG+IhlmkW9MxyAbNcre7cXev7wvW1uL45BMA2r54lfT7H8S1rhp/SRv2Y6DGRclVij6eiptvIdzcjGXcOCzjx2EZN47zylKZ/0kZIfdXAMRfcglp996DJB/dWnJUuQrJoU4LhFEkXHoJ7lWraP3wI9RgiHBrK6HmZtxr14FeT9INNzBg6xYaI/bAjIwMLf57WsY07AY7jd5GdjTsYELqBJKSkkhNTaW+vp79+/eTmprKgQMHDqtaBYNtFBb+FYDEYQ6SjJ0j+isr3wQgNmkeb2esJKXGQl6GF7/lc964u5IF19+OLauePXvvRlUD+PRZPFHeRL6rAs9Hv6PmwD4kycio/GeIH+iisWklA/NuQa/vTDgVVeH/Vv0fte5aEs2JjEkeQ05MDtkx2eTFD2WwSaG27lPq678iHHYRH38CY8b8g7a577Dpsw/ZtmQR6YOH8tnjT+BsSiFrxByufPiPFG/dxKZFH1NXfBBAEKt7f98tseqIMSljeP201wkpIYpai9jduJtiRzET0yYyN2dun4jRhBkP8tlzdeiNek6+6iZ0egs62YTZnPODFgsMuvb7SlxcHBdddBG7du1izpw5JCaKhdEY2yCmTniFVscWtm75LTpdMRDG77XirM2mxpFCKD2Df1x6b5caxI5It6Xz1JynuG7pdXxV+hVLSpegonLO4HO4b+p9P3jR41hB302ozE8R/xtH8f8jhOo61ynobAbsM7NwrqoS8c6VTg62iJvP0PjuveXR7ubHI9RCswTGGjUS1C250pSr9hWzQXGD0Ek6HH4HzTuFHcE8IlGEAshASCHsDGiK2PGEa3UVqj+MIcNGynWjkQxioqxPNGMdn4pnaz1t31aQfGXfUpt+KFRFpend/YQavejiTZiGxOPZXId3Z6MgV5EV96ChA7nqxRIIgiDYbDbcbneX4mnLyEQkk45wq5+fFU4n1NKMuteFP8GBMduunY8oFF9IqKp0TciLIhrHHjpG5EpVVW3F/9BEONPgeLy7GvFsb8A+KxvZ1D3R6Q6BKieqP0zIqFBsquIk80naax2tCna7Ha/X2ynUYo1+DZ+fvo3fTJrT4/6/LP6SonAphdZKhniy8RY0Yz8hA1UR/cUALGNTkHQScafl0bSwANfqKuzTMjT1D9ptga06d7fkKvpwTlaTqTSJQIZQgxdXRO2zT8vUHqgxs7LxbKsnFFGarONTD2untJ2QjndPI/6DrWJ/HSx5hrSIctXQPblSFbWDctWVXKUFE8m2ZDE1fSo1LjEOw7Bjq1pFoYsxknz1KOqf30GgpI3aJzejOANIRh3JV4/uNXxF0sskXTYSz/Z6YubkHNHCjyRLJF46nPpntxKsctH0plCEbFPSO33Pxwq2SWkisQ8wZNoOW89V6RT34Gjd5sjEkUhI1LhraPI29TiRc61apf1367vvEX/+BcTMGk1M7262PiNKrsYUK7i++QYA7/btIMqqiJrcXJnxjHriH1gnTfpBnxddWAnJIeyGrrVO9tmz0aelEaqr02q7ooi/6EKM2VkMaGxg61YRuBBVrUBMrmfnzObL4i9ZXracCakTAGENrK+vp6CggIICEfQwevRoTQELh0LIstyJMJaU/l0oKgpIMrikdwmHr0GnsxIINFJXJ2K81bjZqPJKlljSuEmqwZ7hRZ9Qxqov7yDrxDokCRJiTyZxyG+Rt11C5rJqanz1mGw2fnbHfeSNE0EDPVnAXt/zOutq1mHWmXnt1Ne0psQdkZg4jeHD/kBb2y7i4sYhyybGn3IGmxd9TPnunbz/8P/hbBL9sc655wEMJjPDp89i2LSZVO7dRUN5KWPmnoLB1Dux6gi9rGd44nBtEfdIYDCauPDufx3x+44UQ4cO1Yj3oYiPm8TJJ3/Nzp3vo9MZGTXqnD4FR3TEpLRJ3Df1Ph7d8CgqKgtyF/DQiQ91Ubr68cPRf0Z/YogqVx0LkXV2I5Yx4qbrWl+jkatovPmhiNq8Ch3H3hZ4aAw79ECu0q0gQbgtoPXqMeqMwrKogr+gvfhZ0skiphkI/xesgYonqCWfxc4b0IVIxMzJAUlYgbrrc3M84FhSiv9Ai1hpvzJfi2f27WtG8Ye1BsIBvVC1DhfDHkVPoRaSQac1J83cZ+fmuku4YPcsGl7aSeMbXW1B/mIHKCr6JHOPk9F25erY1M4p7qCWDndotLN1rOh9FGr00vpp4REFkEQtgXUpbaiSSppR2OMMBgM6Xfu10F2vK+CwfVWiYTPf20QRe7SxaqC8DaUtgGTWYY6oCub8JIy5sahBpUvTWiViC3RJEUJk7byqHlWurEFrp15XoXovklGHtUNYhaSXSTi3/aHekyWwIyRJIuHCYcixRgxZ9k71UNH7U6je2+25D7f6IaSATtKa+YKoHw0YQsjIDFYGMEDJJM+fSZgwBxIrDzumo4UhzUbS5SNBBsUZAFki6RcjMWb1HhwAIuQj/sxB6Gzdq1u9QR9nIuFCcZ9Wg+J8xMw5tqpVFOYRichWsZ5q6kPqalS5yrILcmU32smLywN6twa6IxY22WYDVaX24YdRw4cPT/Js2ULLe+/jWr2GQGkpaodap46I1lwN3ScSD20nnkjCZZdhHjUK9HoUvY73Z8r8664RP5hYQQflSgphM3StF5P0erKefIL4Sy4h6bpfknr3XaQ/8jDZzz9P2m+FBWzw4MGYTCZyc3O7FOovGCBSDZeXLdd+K1Fr4MGDB9m/XzhRTjrpJEIhF/Xl+3nxhiv45LE/okbs3G53kaZMlS7PQg3G4PdXU1z8DIqqUFX1HqoaIDZ2PA1hcQw2aw55eTcBkDevnuwZglg17E7g2ydrWP7gXzhzfQY2nx5DSjyXP/qURqx6ws6Gnfx9698B+O3U33ZLrKLQ6SwkJEzVostjk1O1WPaWmiossXGc/9uHsNjb3SGSJJEzaiwTTz/7iIjV/wokSWLcuEsYPfq8IyZWUVwy/BLum3Ifvxz9S/4666/o5X6N5Xig/6z+hKAEwoRbIn1h0jpPpOzTM/Fub8CzvYHqfDEJ6Um5ijYJLHWUElJCx/THdWiYBYAn2DnQAkA26dEnWQg1egnWuNENFauoQxOGEqr1YGiTQC9rFjN9koVwk49Qkw9Tz/frYwLX2mpUfxh9mrXb2GBDqhXLqCS8u5twfldJ4iV9Xwnz7W+m+f39JJw3VCMvh4NnVyOu78V3mnDhMIyZdlRVEJlQkw9fQZNmCwzIYhIT0AUOq1yBIFd1dXVdQi0A4s4YiD7ZQqDVw4q9XxMXsjPaPwR/YSv+8jZMA9qVBM0S2MukTSPIrX5UVdVWb5VAWDR8TbYc0cp/1BKoizOJdLoOkK0Gki4dQcO/duLZVo9pUBy2KT2HcXRENMyiML4SFEjWJ1NHXZcC20OJ6YBYQa7K2zqToI4IKkFtYro+ZifXNpyLv6gVxRfCuzNqCUzSVCNJkog7YyANL+zAvbkW+8xMDGlichRVrrxSACOmHm2Bsk+mMaGVkBxGrwhyaJ2Yimzu/Ls3DYoj4eJhqEGlT6QCBDnIuHcKyFKn706fZAZZEomgjoCmWmrnIbpIdMh3LkkSjRYHmcEkcoIZ+CONb/daiylp9TGZqX0a19HAPCyBhPOH0fZNOXGn5B62JulYwZKfhH1GJq411dimpGupmscakl4mdt4AnGuqRTPrw+BQcgWi31WJo4TdTbuZld1VilIDAdxr1gKQ+eQTVN9zL75du2j94EMSLr2k289RFYWG556j6cWXDhmwhHHwIAa8/DKGzPZeX82+ZlBVsnaKoIOEK68gZs4cABSvlwOtB/nw68uxO/ahqMoPXpWPKldBOdgtuQKwTpmCNdJfrjvExMRw1113CbXpEPvViVknYtFbqHZXU9BcQH5SPqmpqcTGx9LWKgjk6NGjiY2F9etPwetpwpSSRsl2J1u/+pxJZ57DwcJHUdUQzoo4HCWxZF1yDdUtf6K84jWe3LeSU80lxOkgLeNSdjaLMJsMWwa5A66jpvp9fH6xmKh3z4emWGT5AI76OmSgPNVD6PRsEjLar4NmXzMrylcwImEE+Un56GQdzoCTe7+/l5Aa4tS8Uzl/6PlHfK4nnn42BzeuRW8wcu49D3ZJ7uvHD4ckSfwi/xeH37AfPwj95OonhGjalGzTd7F0GAfEYMiwEaxxM752MCVJZVrD4EORYcvAorfgDXkpd5YzKO7YsZXelKtD/eqGDJtGrqJWsmEJw4hzidU785B4rW5Fn2TGz/EPtVB8IZyrI6pVL31yYubk4N3dhGdHPbHzB3QKVOgN7o21KO4QjiWlmPOT+kQm3BvFw9A+M0vr8SNJEpaxKTi/rcCzo0GbcAfk9ij2H6JcAehsBmJPFhHjH+ofYF/zPt5V/k7cfh2u1VWYLmsnV1FrWE+WQAB9nLhm1YAiUgWtBlRVpen1PfiLHch2A+ahCZiHJ2AamnBYJaC7GPaOMA2KI/aUPNqWltLyWRGG7BiMGb0nlalBBX+pmNBss+wDNyToEqijTqu3iiJKZqK2wGgj4QpnRSfy2BEHmg/gCwtSWGGspcbUSIY/Gd++5nZL4JjOpNuUG4s5Pwnf3iYcS0pJvkrUvkQVXz8hjPRsC1T8CjpVR525mSyPuH7s07o2DwWwTTz8pPtQdGcflHSyIP8NXkL1ni7kKtQhhv1QVJsayCSJVG883iphAdto301xTRM3j7/5iMfXEY3eRrwhr/ZdHQrb5LQ+EY9jjbgzB2EZm9JnUnu0OJJExe7I1ajkUXxe/Dl7G7tXrjxbt6F4POiSkkSIxO23U/fnP1P/9NPEnLIAfWLngB3F56P6d7/D+dUSAKyTJxNqbSFYWYXq8xEoLKLlnXdJvas9ja7Z10xOI5ibXEgmE7YTTtBeky0WBptGYtKZcAVdlLeVa2rb0SK68NSTLbCviIYVRFFa+jxtzt0MH/ZHZmbNZFnZMpaXLSc/KZ/tDdvZKe8kjzxUVFJHpVKw77f4A3XIehh4ShV123ysfvd1EocGaWpaCeioWJ1MTHIKI8ZdRWjvNurrv+RMcyE2HTjD8Ms1z5NgEfeAdFs6Op2FkSMfo7DoMXKyryIj43w4CwJeD5UFe6hsKuX1qofRN7XQFmgj1hjLwZaD3LriVqrd4jkZY4hhSvoU3EE3Va4qsuxZ/GH6H46qhic7fzRn330/MYnJpA8+ssj8fvTjx4R+W+BPCN1ZAqOQJAlbZML0s5aTyLZl9bjKJkuy1kz4WCcGRpWr6EQaurcFAlokb8e6q+EJw5nuFPHxHQvqo+QlqlYcL7jW1aD6QuhTLF0muR1hzI4RqppCF7tWT1BVVZu4hxq9Wrper+9RVAIV4vxYx3dunholWr4DLVo/Ib8aqb3qQ80ViBVV6J5cdUS039WmXBGT793VqEXjh5p9ovZJBtPgnsMjJINONBOmve7Ku7NRWAoBxRXEs62e5nf3U/PoBjy7GnodU3cx7F2Ob3a26CsVUmj+TwGKv2vqXkf4y9tED6AYIztVUesQI4lzdCi5OpSYZtmzkJDwhDw0+TqnAEYRbe59QvoJ2Iw2VttFHUbb8nJhCTTpuiWocaflgQy+gmbRp4iIfQ0IIaxBh9oCTSaT9jdb0EZZJDHQODBWC544nmhPDOxad9XbvaxYJ2yVcS0WzaK50b6LnY07tXvJ0UBRFa5YfAVnfXIWKytWHvV+jgckWcKUG3tUbQOOF6I9rjou0kQTA3c37e7W7umKWALts2YhyTIJl/0c08iRKA4H9X/7W6dtQw0NlF15lSBWBgMZjz5K7lsLGfzFFwzftpXMJx4HwPHFF5r9DQS5mlgoPtt6wlTkQxRlg2zQ6mr62vy8J4RCIdatWwdAg7mh20CLo4HXW0VR8VM0NCxl85YLmZ8+GoDl5ctZWrqU65Zex37rfgJygKLYIr4p+wNNTd+hhCWa9ol7bNqEJgbML+LAgYcB8NeMINBmJH/WyUiyzLChDxJQ9dgiTuZdgXhqvY0UNIv7WoZNzBcSE09k6pTPBLGKwGixMmjiFE5acBGD4gcRUkKsrFjJ6qrVXPHVFVS7q0mxpBBjiMEZdPJNxTdsqN2AXtLz+EmPE2M8+qCnoVOm9xOrfvzk8eO5k/fjsOgYZtEdrBNSCRkUMoOpLAjP7HVfUVUr2lPqmI3R0dUW2CO5yhCT00CHxMChah7DfLkoKEjD2ieA0Tqe46lcKf4wrlXCfhfTi2oVRez8ASCBZ1s93r3dT6Y7ItTo1YInAFxrqnrZOvKeJq/oYaWXtYTFKPRpVvSpFtEcNPL5XkWc/4AcINOe2WV/h6I35aojopOqdeEtImVMbR9/1BJoHBDbxWp2KDomBqpBBcdXJQDEzM0h+VdjsJ+ULY5JUXEsLkEN91wrdTjlCsSkNeHi4ejiRP1Vyye9LyZEJ/PGwbHUe0WdkkUV121PtsCocmXUGbUJS091VzsadgAwOX0yc3LmsNYu/j8azNHREtgRhlSr1gbAsbhEtDyIpL6hiuv0UOUK2q2BceE4lsauhURDl9TB44XofSrUTahFqJsYdgBfyEehrgwAfWEAwiq6BBOBBAgpIbbVbzvq8RS2FlLpqiSshrlr5V1a49Z+dEVQCVLrEba7jsrV8MTh6CQdjd5G6j31Xd7n+l6QVvtJwjIo6fWk/17EPTs++pjC+QsoOvU0is78GcU/Owvfzp3o4uIY8Mq/ib+gfXIvSRIxp5yCHBNDqKYGz8ZN2mstvhYmFAmyZZ89u9vxH0lsfG/YvHkzra2thA1himKLfpByFUXhpvVsX/so0WaVPl8l1vq/M9QsUeIo4e6VdxNQAkwZNIWbf3MzrZn7maoXC3g1G1JQ608hf+RTyJKJ2Bw3eqsbwjYOLBWW8JGzTgbAqUh82hqtEZX59ZyP+b8T/o9kSzISknaODof5ufMB+Of2f3LLiltwB91MTpvMJ+d8wqpLV/HOme9wx8Q7mJM9h4dnPMzYlLE/+Bz1ox8/dfSTq58Qgr1YaQBko4592WLCO6tufK/7GpkkOmH/0IfPoehroAWAMaJchRo8hJp9tH5RTPhl8RApsJSwyblV2zaaBhdq8h1ROIE2LnfwsMTMvaEGxRNCl2TGOjal120BTANisc8Sq7otHx/UeuT0hECJUK30yRaQhJWuu1X9Tu+pEJYUY5YdSdf55ypJUvs4Q+KceENCzbFZbJj1h6/d6Cu5iipXe5v2Yo80tHVvqkPxhvBHyFVvlsAo9B16XTnXVBFu9aOLNRIzJwfz4HjizxhI2m0TkK16wi1+vHsbe9xXX5QrEPbGxJ+PABm82xt67X0VrbfyZ8uE1TB6WY9eEYSxJ1tgx3OXEyvsZj3VXXVs7r0gdwH7LaU49O3v700tjZ2fi2SQCZQ78WyugwjxlJXODYQ7ImoNzNRlsjFmN2WXh484mv5o0ZNypaqqRrj0hzQYrnXXUhmJjY8en2VkElMzRK3VptpN9BWBykoqb78Dz6ZNnd4rIeEP+7ntm9soaCo4wqP6/wdq3bUoqoJRNpJsab8mLXqLVrN7qCoUrKoiUFgEsoxtxgzt79YJE4i/RNRbBSsrCZSVESgqIuxwYMzNJe+9d7FN7VpLJ5tMxJ52GgCORYu0v/taGhkeyTY5lFyFw2ECgUCnZsJHC5/Pp/WXqs+sJyyHsRt/GLnat2Yli556BId3OQAV36fjrjMTDrVxU5KHmWFAhctHXs7Tc54m05bGLZkWTDI4K60070tjwfW3kZFxDpOnfIyM+G7KVsYR9kukDx5KUpa4By0uXsw6l8zmYA75Ix8nxpbLz0f8nCUXLGHZhcu0aP3D4ZRckQpY5apCURXOGXwOLy94mThTHDpZx+jk0Vw35jr+Pu/vnDX4rB90fvrRj/8V9JOrnxC0vjBpPVsTvkpaDUB6daxm2+oOHSfLR0NWuoMaUrQeKocLtACQY4zINgMoUPvkJhF/HlRojHfyXMbbrChfoW2rTzCDBKo/3En96SsaX9lF7dNbCbV0f06UQBhnJDQidk5On/vpxC3IRZ9qRXEFD5tKF+2dZBmTjHmksDweTr3SyFV29w91y7jOJNAXEuQ2KabnfhcdESVX3QVadMTQhKHoJT2t/laasjzo06yogTCuDTX4CsVxmYbGH/bzotdFoNKpNWKOPS2vU08oyaDTLK6uSP1bd4gmR+r6UO9myovDOk6k47nWdL9PxR/Wznd9qiDC6db0Lg2Eo+iOmEYTA8udXclVg6eBKlcVEhJjkscwI3MGFoOFtfbtAD1aAqPQxRqxzxLEtnWxUPycshuDIiy4h9oCoV25SlbFJKy0rbTH/R9rGCKx6qFDGgkr7qBIt5Tat4mixl1DtbGzHdQ8IpEp6SIsYGPNxj5/fu1Df8T59ddU3/dblEBAI1fXj72eSWmTcAVd3Lj8Rsrayo742H4KCLW0UH7tL9k3cRIHZ51E0elnUHLRxVTedhuhxp4XLaC93irTntklEEKzBh7S7yoawW6ZMAFdXGcCn/77Bxn42afkvfcuuW//hwFvvsGAN95g4GefYszL63EcceecDYBz6VIUr5eQEiJ3vwOdCrqBeRiz2y2LoVCIN954gyeffJJcQy4ABU0FhJXDJxV2h3Xr1uHxeEhKSqI6TtwzLLq+1dZ2h7bGepb/+3niBjoxWMOE/Sb8dQMp+nIgjlI7sqxyYZ6Hv8TCCfVbWfP57/h+8TUYQ1WE/DLl32USmJZNYqa4B8TYRzDrpG9x7jyLloPifI+cNVf7vM+LP0dFIjf3RjIyztP+btKZSLP1va5wWMIwhiWIRMs7Jt7BIzMe6dSfqR/96EdX9JOrnwjUoKIpL4bU7uslFFVhvX8L26z7RO3H1roe9zc8Qdg7mnxN3do7jgbhtoBwOuglQZoi0AIt9J0nf5IkaXVXKIhmvdeMwn9lIuWmGr6r+I6QImpkJIOsqWFHWncVavYRrHZDSNFsX4fCt08019TFmzpFVB8OkkEm8eJhIEt4dzXi3dlznVC0VsY0MA77DGHZ82yt15L+uoNGrgZ072E3pFg72QUDQbGv1Li+HUNflSuTzqRZSQuaC4iJqFfOFeWovhCSWY8x+/A+e10kCc2ztV70EcuyYx3fdaz26ZmgkwiUtYk6qEOgeIJa/HxvtsBO+4ye850NhNu69tryl4g4eV2imSq9+O1k2DPwesX121PNldvtRonUhPQWxx61BA5NGIrdaMesNzM7ZzZL49cSlhRsU9O7pB4eipiTspFtemEVBZr1DsxhMa7ebIG2oHitxFHS6/6PJaLKleIOdlJ1/YWtAOgSzV3aHNS6a/HLARwmYbWUjDKmgXGckC5CC3Y37cbhdxz2s12rVuNeLRaagtXVtLz7LpvrhA1wZtZM/j7374xMHEmzr5nrv76eRm/vZONYI+xy493Vfd3SsUCopYXya67FvXYtqsdDqKGBQEkJvl27cC5bTuPzz/f6/mi9VVZMFqGWFvzFxdpYRyeL+qCoChuFa2Wk3uqkkzgUkk6HefhwLOPGYZ04EdvUqdhOmIp8mAawlokTMWRlobjdOL/5hlZ/KxMLxW8t9hDV6ptvvqG8vJxAIEBbeRsWvQVPyHNU5NnlcrF2rUg9nDdvHu6QG0NQYtsTL7Pwvjtorj6ytgCKEuarfzyF3+Mmc5J4fg0Zfj03vPAWd7z5GZOmvEa4eYw45ngPinULwZiPCFtFvVflqnRqdArv2FdrrVYA9Hor8658AHNMLEaLlREzxLnf37yffc37MMgGTh94+hEff0dIksS/T/k3n537GdeNue5H02y2H/34MaOfXP1EEGwUSYGSWY8c0/2qUbWrGk/Iw8oEMYnw7Op5wmDWm7UeFN1ZA1VFxV/qQPH1HgDQEVoMe5yp0w24J1sgQNxpA7FNyyD5ujGk3DgW8/BEJqVPJs4UR4u/pVONxdHWXUUnc4DW6LbLNlFVKdJX60hgzI4hdq6wYrR8WtTtxD3k8BNu8YMExtwYTIPiMKTbUIMK7k213e5XDSoEI/VovREXS8QaGEZBVcQEKDPu8PVW0B5oEQgEtH4uPaGj2mkdn4psN4jePIB5aHyfkg/1CZ1T4+J/Nqjb9+lijFpgh2t1V3UvSrDlGGMn1as3GLNjMObGQljFtb6m02uqouJcIdQm87AEalztccU+n/isQ5WrKJlRVVUjYFpiYFvP5Gpcyjjtb6fknsJ+Sym3THic2NPyDnsMsllP7NwB2v836BzIHN4WKPvENsdDpXlt92vc+d2dmkKtjdWo05TKqA1QVVWcq8T32V0yYa1b/BZcMeI3ZBqSgGSQybBnMDhuMIqqsK5mXa/jUcNh6p94AgDjIHGPq3/+efxtrVj0FkYljyLGGMML818gNzaXanc1bxe8fbSHf8QIu1yUXnoJpRddRMn5F9C29OtOgQ0/FKHmZsqvuhr/vn3oUpLJ/c9bDPzkY3IXvknagw8A0PrhR4Qael4IqnJWMrxS5by3yjh40myKzziTkvMvoPWjj5mUIGpqttVvwxexISt+P+7164H2eqtjAUmWiT1bWM0cixbR7GlifLG4x8XMOVnbrqioSCNDAPv37WdkorC+d7QGhkIhli37lAMHereDrly5kmAwSFZWFiNHjsQVdDGsIgZnVQ31pUW8ff9dlGzre83epkUfU1mwG3saGBOakCQdmZnCKinLOnLHTOSUCz9l6uRviJdvQG2diOrLAFWH5J7AiPE3EDhrGCEpzGMbH+tEymMSk7nqiX9w1ZP/wBorFKxFRcJGOSdnDnGmH24DTjAnHNNU4X70438d/eTqJ4JQvZhkG9KsPa4cRcMp6rJcIEuE6jy91vTkJ0Ymy82dyZUaUmh+Zx8NL+6k5q8bcXxdeth6Imivt9J3qLcKhoOEVEHQLIau5MqYZSfh3CGYh8Rrx6WX9czJngPQ2RrYoe7qSODroFb5y7qqIACBSIqfMS+229cPh5iTczBk2VG9oW5DEwIR8mbItCOb9EiSpCkprrU13QY3BGpcEFZF9H4PjXlBNMwFCOja7S85Cd1HTR8Ko9GIwSDIel/rrvY07kEyyFojY+ibJRA620Uto5MwDez5wR+t7fLubiR0SOPhvoRZdL9PMWb3hhrUYPv5cm+qJVDhRDLpiJ2bo8UMZ9oze1SudDqdRri0OPZozVU3tsDuyNXMrJlY9BbKvOXsbelb/aPthAztemjWi+vWYDBo32NHRJWroDuIpErH3BbY6G3k2a3PsqxsGR8e+LDL64fWXfmLHASrXEgGWbN+dkQ0RKE1RxB929T2Pjczs0RIz6rKVb2OyfHpp/gPHECOjSV34ZvCdtbq4GcbVSamTcQgi/OUZEnilvG3ALC0dOlxU5E6Qg2Hqb7rblGbBPgLCqi64w5KzjkHx+ef49m6Dff69bhWrqRt2TKCNTWH2WNnhBobKb/qKvwHDqBPSSH3jTexTpqEeeRIrFOmkHDZZVjGj0cNBGh+441u9+H4/Asm3fc2jywMM2B9KQSDoNfjLyig5v77CZ9zLdeuNWNy+bXFL8/mzaheL/qUFEwjRvygc3Qo4s4W1kD36jU4V35HnAd8JhnrxAni7243n3zyCdDefLeqqoqRtq7kasuWT1G5l+3bb+vRCl1Ssgiv9zEsFgfz589HURUCfi+jSsRClD0pGb/HzSePPcymzz8+7HVTW3SQte+/BcCYc8X1nJw0F7O56/UfE5vLpDn3Mv/8D5h/xmrmzt3P3LM+ZMbFv+A3J/8Ok87EhtoNfHiw82/NnpBIbLJwAISUEF8WfwnAWYP6a6D60Y//F+gnVz8RBA+TFAhodoHslAEi0Q0xMe0JHZWIKJRAmMY39+KNqF6qL4zzmwpq/7qR1s+7V2WiCHVQrqLwhNrJXXfKVU+IJhStKF+hPbyiE+kjUa5UVe1kBQzVe7qocYovRLBWTI5NuUdHriRduz3QV9BMoKozUYlGsJs6kDfr+FRkm56wo/vgBs0SmBPbqxVDn2Qh8fIRWM8SE/uAHCAnrm/kSpKkI04M3Nss6vRs0zKQjDLIUp8bruoTzaCTQCcRd/pAAIpai7hu6XVsr9/eaVtjpl1EuyuisXNH9DXM4lBY8pPRxZtQ3CE828XKfdgVwPFVKQCxp+SiizVR4z68cgVgixCu1nJBpqLKVVugrVOoRTAcZE+jmOR1JFdmvZnZ2cLe9HXp1306Bkkvk3DuEEJWle2W/WIc3ahWIJRJvV6PqqpYQ1Zq3bVdFKYfgi+LvmD8gSBDq1TeKniLoNJ5EebQuqtoGqd1clq3fcyiiqFvopHMh6ZjGdHeFynatHZN1RoUtXulR/F4aHjmWQCSb7oJfVISKb++A4CzNiqcaM7vtP3s7NmYdWbKneXsa95HoLKSuieeoG3JUhTPsTtPUTQ88wyulSuRTCZy/v1vkm66Edlux3+wkOp77qXssssov/oaKm64karbbqfo1NNofOEF1MOoymowSNuyZZRdeRX+g4XoU1MZ8OYbmAYN7LSdJEkk3XA9AC1vv0PY0dli6fjyS6rvuYfEyjb8enCdOo28Dz9k6KrvSb37LvSZGYRbWjhtpYu/vxCm7sXnUbxe3JHgB9vsk465bcw0cCDmsWMhHMb49OsAlI2IQzIaUVWVTz/9FJfLRUpKCueeey7ZkTqsVLcgG9HfHUBN7ZvodGESEktZseKLLp+lqir7DzxGQmIV4yesJjs7CU/Iw6AqO1a/HntiEtc89QJj5p6Cqip8/9arLPnnU4RD3Ts8Aj4vi//+JEo4zLDpUwnoRN1fVnbfmrh2PJfZMdncNuE2AB7f+DjFjuJu37O2ei1NviYSTAnMzO49Nbgf/ejH8UE/ufqJoC9hFgdbBbkaljAMayR1zNuLNfBQcqX4QjS+uhv/gRYkg0zytaNJ+sVIocgEFVxrqql9eqsWvd0RvsIWnN8JK1TH3jVRS6Be1msrxn3B9MzpWPQWat212viiE+nwEShXoXoPiisoarbiTaB2tQYGyp2gihqQjsTwSGFIs2lpb4cGVURthx2VGskgY5saCW7oJmQheJgwi46wjkkhmCXOb197XEXRV3I1NGEoBtmAw++gqLUInc1Ayg3jSPnVGPTxfVOQZKuBlF+OJvXGcdr3uXDvQjbUbuDv2/7edWyRNEb3htpOPao05Sr5yJQrSSdhP1GoV87VVahqJPLdF8KQacM+TbzW0RbYk3IFYIhYq8qffoZQSwsWvYUTM08E4Jmtz2jbFTQXEFACxJviyY3N7bSPn3mH8vKzIabd8iqlV19NzR//SPObbxIo69nCFyjeiOf9m7FVlAI9kytJkjT1Kk0SNrzuVLWjQdjjwfinF7jvQ4WH/hOG8uouBLGjchWsdePb3wISWs3eoYgqV+n29C6x/hNTJ2LVW2nyNWm9eg5F06uvEWpowJCdTcLllwFgnT+P0gwdlgBMWtr5nFoNVo20fbPjE8qvvobmV16l6te/5sCJM6i87TYcixYdE6LlWLSIpn/9G4CMRx/FPnMGqXfcwZBvVpB8+20Y8/Iw5A7ANHQI5lGjMA4ZjBoI0PDscxSfd76WetgRgcoq6p95hsK586i67XYCxcXo09PJXfgmpoEDu2wPYJ8zB9Pw4SgeD83/+U/7vkpLqX3w9wCsnGLhxlt1WH9/N5bRo9AnJJB03XUM+fprsp57Fv+QLKwBGP7+ZopOOx3Hl4vFvmd1rbc6FoiqV/qGVgBqx4rrZ+PGjRw8eBCdTscFF1yA0WhkREQ5C9YIor+veR8hJURl5V5sNnHdyLJKZeXXVFV1vk9v3LgUg0Fcg3p9M3v23kmbz8GYYrEoNvln52M0W1hw/W3MveYGJFlm76pvNQIVhaqqtDbv5LOnHqClpgp7YhJjzs4lHHZhseSSmHDiUZ2HK/KvYFrGNHxhH7/9/rcEw10dJVFL4BmDzjiiZ24/+tGPY4d+cvUTweFi2KFduRqaMBRzfhLIEKxxaz10DsXwxOHIkkyjt5G6hmoaXt5JoLQNyawn+boxmIclYBmdTOqt40m+drRme2t8dTfO7ys1RcmzvZ7G1/ag+sMYB8Zhn95ud4gqV4eGWRwOJp2JWVli0rO8XMTW6o6i5soXqbcy5sVqxOZQa6AWNHGUqlVHRCeNnh0NhCNNXsPuoNaj7FDboX1aBsjClhhVz6JoD7Po27hqWgUhCMmhTvHJh0NfEwONOiPTM6cDsKR0ifhblr1Xa193MA2Kx5jTXkMWTXHbVLuJBs8hSXHDEtCnWFD9YRxfleLaWINzdZX2HR6pcgVgm5yGZJQJ1XloW1aGZ2s9SJBw3lAknYSqqppylWnP7FG5CtbXY6gW27mcTipvvgXF5+OuyXchSzLLypZpxxa1BI5NGdtpNTrsdJL5xHvEeyDBEca7fgOt77xL3Z//QvE55+Iv7GoxDTU2UvuHPyCFwkw/0HNSYBRRcpWlyyLBqVLa2HOvr7DTieI9/O8rWFXF/ksvZPz2iC0xDL9aqvDG7tc72aS0Xlf1Hi2N0zI6udvvTVVVreYq2i+sIww6A9MypgHdWwOD9fU0vfIKAKl33YlsFOfmoKOQhbPFmHSfLiNQ2XlCfWreqRiCKoP+8h7Bykr06ekYsrNRfT6cy5ZTfe99FJ97Hv6DBzlaeHfupOYB0e8p6frrifvZmdpruthYUm6+mcFLvmLI0qUM+vxzBn70IYM+/5zMJ59El5REoKiIsiuupOzqayi9/BcUnXY6+6eeQNH8+TS9+BKhhgZ0SUkk/epX5L3/Hsbc3J6GItSr638FQMsbb6K43Sh+P5W/uRPF48E0aSIvzA3gtkhdFmkkvZ7YU04h6723efZsmfo4CNXVEW5sBL0e24nTj/oc9YbYM88AfTvZdk0ahtvt5uuvBZk/5ZRTSE8XlrsouaqrrCNOjsMX9lHsKGbv3heQ5XbFMyGxiq+++kq7XhsaGtix863IOUpFlk00NX3LgU0PE+sxEDAojJl3SuR1iQmnncV59/4enV7PgfWrWfL80yiRZMKiwqfZsv08Eqd9Sv5lRUy4UqK67nUAsrIuQ5KObuolSzKPznyUeFM8Bc0F/H175wWpOncd35Z/C8DZg88+qs/oRz/68cPRT65+AlBDCqHGiA2qB+XKH/ZrxepD44eisxkwDYoHwNODNdCitzAobhD2sBXXa4UEq93IdgMp14/pRDQkSdi+Um8ah3VyGqiikWnzu/tp+66C5nf3Q1jFMjaZlF+O7rTi3FuYxeEwb8A8oL3uKjohUzyhXhP2OiLat8g0OF5L3Asckj73Q+utOsKY0yE0YZ1QowJRIpBiQWc3dtpeF2fCEo1l39BeX6F4gpr1rS/KFbSTK9koH5E1p6/KFaAlT31V8tUxqVGp99RrSoqKytLSpZ1el2QJ+4xIX631NbR+XIjji2JNvTy0T1JfIFsNWCcJFcf5jVBbbVPTNcLn8Du06zbNmqaRq0OVq9YPPsDsFaTZGx+Pd9s2qu+5h6Gxg7lo2EUAPLbxMcJKWCNX41PGd9pH7cOPEKqqxpcazx8u17HwvHjirrsW0/DhqD4fVXfdjeLvbMWtffRRzc4VNAml1dYLuYqGWozf4uelf4TJOf+3lFx4ETV//CMt779P44svUXn7HRTOX8CBKVMpOuVUwq2tPe7PvX4DJRdehHSghDYLfH/NeDCbGF2mkvL9XjbWtselR5WrcKsfzw5BnO2zsgiUlxOorOx0DbUF2trPew9R0VGb0+qq1QRra2n99FPqnniC8l9dT8l556N6vZjHjSUm0h8JYGPtRnYNlKkYnoAaDFL3yCOEmtqbfs/MmMEdX0rkVQRQY2wMePVVBi/7moGffEzSTTeiT0sjWF5O6SWX4vzmmx7Py6FQFQX3xo1UP/AA5VdfgxoIYD/5ZM2meDhIkkTcz85k8OIvtT5RnvXr8W7ZQqC0FKVN3FdsJ04n65lnGPrtN6TedSeG1MMnhcaedhqG3AGEHQ5aPviA+scew19QgC4hgfDvb0eRJewGO7HG7u+JKbZU6mcO5zfX62i57mz06ekkXHwRupjDJ4YeDfQJCdhnicW24nSwpmdRXl5OOBwmOTmZqR36ZCUnJ5OSkoKiKIyXxgOwq3YbYUWQDptNXBuJidVUVlawa9cuQqEQH374IfHx4l6Ul/cLRgx/FABFWkFsrpOKoWA0d36ODZwwmZ/9+rfIOh0Fq79j2cv/pKlxI6Xl7WmMxpgATu8qvN5yZNlIZsYFP+hcpFpTeejEhwB4fffrbKjZQKmjlIfXPcyZn5xJQAkwJH6IFujRj370478P/eE36cf/a4SavKCoSCYdulhjt9sUtxYTVsPEGmNJtYqHq2VMMv7CVry7G4md030Nzti4Mdyy7TxMPgk5xkjK9WMw9DBhlfQyCRcMxZhlp/XzYrw7GvBGJ0wzMok7s2vymzd49ORqVvYs9LKeEkcJxa3FDIofhBxjQHEGCTX7MFp7tzyoYRV/cSsA5sHxEBlboNyJqqhIsoQaVjSFyHQMyBWIc9Fc1oZ7Qw2xJw/oFMHeHWzTMvDuacKztZ640wYim3TamPTJFuTDHGcUDW3iuzCaur9GekI0MbAv5GpuzlytRmVv094+N6LsCZtrOydufVX6Fb/I71yPYJuURqC8jXBbAMkgIxl1SAYZQ4YNQ/qRkysA+4mZuNdFyKjdQNypedpr0TCLJHMSarB98t9RuVKDQVrfe5+4iB3PM3kS0rZtOJctp+4vf+Xmu25mccli9rfs55PCT7oNs3AsWkTb55+DTsfgp5/DUfIAn7urGTIpiSuv+pdQrvbvp/7Jv5F+//8B4FyxAudXS0CnY+1ts9CvbhXHUNx9/QVAbGTFX/KI618OhfHt3o1v9+5utw81NND85kJSbr+ty2vudesov+5XEA5Tlq7jr+fDXy68nZTE3TT87SmuXKHwzsyXOeFcEZ2usxmQbXoUdwjCKsa8WIJlO6m44QZQFHQpyVjHj8cyfgL144RKkmhOxKTr3p4bVbMNa7dT9H+no/o6W4TluDjSH3ig0+JCVD10XHMWOf/3Fq6VKymcN5+ESy4m8dprcS9cyNSCECEZNt8+h/xInZJ55EjMI0eSeOWVVN3xazwbN1J5y62k3HE7STfc0O0ChhoM4t25E9f3q2j7/HOC1e12X/PYsWQ+8TiSfGRrmrq4ODL++BDxF1+Eb9cudPEJ6JMS0SUloU9ORhd75PctSacj6brrqH3w91Q89QSmgFB0Mh9/jC1WcU6z7Fm9LtJMy5jGwZaDfH2ihYfu/vaIx3CkSLr+V9RtXcsXU4KcZE6gKqJA5uTkdBnniBEjaGhoIN2VDhYoLHiPyfFeAgEbJ816jDVrV2M0urDbm1m2bBnl5eU0NFQxZKhQTlNT5mO3D6eqZAUO31fkzq1mp2dot+MaMmUaZ9x2D18++zh7Vi1BSX8JY6xKa1ECU2Y8jz09SJtzNy7XPpIST8Jg6Ft9am+YN2AeFw67kA8PfMjt39yON+RFJRKVnzSaP5z4h/7I9H704/8h+snVjxwhJcT321cwnAQMqT0nBUbrrYYmDNW2seQn0fppIcFKF6FmnxZlHoUaVLhwxywSfGa8Bj95103skVhFIUkS9umZGNKsNP1nH4o7SNwZA7HP6v5B/EOUqxhjDNMyprG6ajUrylcwKH4Q+iQLAadQdaLx5Io3hHtzLdbxqehi2olFsNqF6gsjmXUYsuwiyt4oo/rDhOo9GNJtBKvdqEEFyaw/KhWkO1hGidCEcKsfz/Z6/CW9K2OmwfHok8yEmnx4ttdjPyGjQ5hF31eCm53N4vPNR3auj0S5shqszMmZw5LSJSwuWfyDydWmOjHxPX3g6SwtXcrOhp1UOivJjmm3I4leYsO7fb+qqgRra/EXFhFubSX2lAVIxu7Jpb+wEH9hEbLFjGQyY8zRE6gIEX/WoE4ENlpv1TEpUK/Xo+9gS3KuWEGovp6UiP2qzuUi469/ofquu2l56y3i/X7unnQOf/Av5KnNT+EMOpElWesRFKiooPaPDwOQfPNNxE6awi3xt3D/6vv5965/c8HQC8j8y5+puOFGWhYuxDbjRKyTJmnvSbr2Gvbn16Gr8GEClDVr8Z93fpcAA19BAYF/Pg/jxuKOi+X+K3U4rDChOZbzQ2PIqg2hT0jAnJ+POX8kwepqau5/gOaFC0m8+qpOE3c1FKL20UchHMY9Ywz3T99LUnwmJ2ScgHT1ZJo+/ZjYolKGvb2Og7MPan3R9ClWAm7xG7COjaH67pshEj0ebmjEuWw5zmXLUWWJ2adLNJycTk9It6Vzxd4kzvysDpUwpuHDsU6ahGnYMO2fzt5efxZWwmyp2wJA/qyzGfDv2dQ/8yy+nTtpfuNNmt9+R6ThAS+cKVNo2cnVqtrpXqZPSGDAK/+m7i9/peXtt2l45llcq1djGjwEXWIC+oREUBXc6zfg2bgRxd1u75XtdmJOO5W4s8/GOnnyEROrjrCMGoVl1A/7vXVE3DnnUPzUX7C2iGv84JmjGTFzJpX7RCx9lr37urgopmVMY+HehayvWX/MxtQbrBMm8PeHxrG1fivnmhOpjhDXrKyu4xw5ciSrVq1CbVSxDLAwUF8KgF4/F4PBTmLiDBoalpKZ2cSBA0ls3ryZxMRaZDmM2ZSJzSaa5hYut2AZbMGe4eVc4342b7mErMxLSE09A52u/Xk6fPpMwqEgO7fdizHWR9BtYPKJ/2BAvlDUEhNnHPPzcc/ke9hcu1lLAJ2TPYerRl3FpLRJ/cSqH/34f4x+cvUjx9a6rWzctYbh/IxAYs82LK3eKr59dU0XY8Q0MA5/sQPv7kZiTmqfsKphlaZ39pFQY8Yj+3hs0Bu8kja/z+MyDYon/e7JhF2BXglZtObKoregKAqLFy/G5/Nx/vnnI/dhojFvwDxWV61meflyfjX2V+gTzQRK27S6K1VRaXq7AP/BVry7m0i5YaymnkUj2E2D2nswGbNj8Bc78Je3YUi3dUrx60ufpr4gGprgWFyC8/tKzd7Xk3IlyRK2EzJwLC7BvaEG29T0dnLVR0sgQJu7DRMmYmxHZs05EnIFgggtKV3CkpIl3DnpTnRy3/pMdYeocnV63uk0e5vZULuBpaVL+eWYX/b4HlVVaVn4Fo4vvyBQWNRpMus+52wy/vrXLpML7549lF12OWpHi51sQLIkYEw5G8voXyPpxHFE663Sbek91lu1/EdMQHPPOB290yn6hE2dSuq991L/+OO0fvABIz+Al+P0rBnayu48ifiMAehrmwjHhai+514UtxvLxIkk33ADAGcOPJPXdr9GYWshr+x+hTtn30nClVfQ8uZCan73f1hPOIFQfT3G3FySb7mFtlW/Rooxk+YDo8dDzQMPkLvwTZBlAiWluNeupf6pp7DodDBuLJ6kJG65/Fme2PwESxOqWMpaxs4cy/+dcI2WBKkqCs2vv47/YCHNb71Fys03a8fc+sEHBAqL0MXH8+bZMQRaJc4efDayJINBJudPf6bs55dx8k6Vrz5+kqG/fAkQdVeB0jb0KRaaXniIcHMzphEjyH3jdfyFhXi3b8e1ajWe9eu55UuV1fYg/Kyb711RqH/scc76TDR4PjArl7Of/wCpmwj6KPY178MVdBFjiGFEwgh0J+rImz4d95q1NL7wAt4tgnjF33IjWxLfxuOuYWfjzk4KI4BkMJD++wcxDR9O7SOP4N28Be/mLd1+pi4+Huv0acQuWIB97lxks5kPD3zIznVfMCltEidknEC6rWcC+d9Cha+G96YEueZr2JcNfxxVQP3uV2j2iUWajgsc3WFy2mT0sp4qVxUVbRVaG4LjBZdrP6fpNxOyKCSYEthWLWLgMzO79vTLyMggNjaWtrY27s24iATdiyiKzDK/nznhIMlJc2hoWEp2TgsHRAcTho8Q94ak5LkAbFvyOVV7CpCLs7BcWMNQqw+HYzMOx2YOHHyE9PRzycq8FLtdLPykjTKQEhTnbmDOA+SOmnZcz4fVYOXFBS/yVclXzB0wt78PVT/68SNCP7n6kWNK+hSa5X0ArPFv4hImdLtdlFwNSxzW6e+WMcldyFXYGaB1URG+vU2gl3g46yV2yPup99RrlsK+QLbokS29X0JR5cpqsLJu3To2bxaT6RkzZpCR0bVo/VCcnHMyD697mL1Ne6lx1WBL6tzryrWqEv/BVkDUNrk31oqQCNAi2M2D20mNMTcWf7GDQJkTpmYQKBOWvWNRb9URtinptC0vI9Qgjl8XZ0Kf0EuvqklpOL4uJVjtxrO5EH+pGHtfwywAPD4PJkzE2+KPaKx9DbSIYmbWTGKMMdR769lav5Up6VOO6POiaPQ2UtpWioTExLSJNPma2FC7gSWlS3okV2o4TO0fH6b1/ffb/6jTYRwwgEB5OY7PFmGZOImESy7WXg63tlJ1+x2ofj+GnBx0sbEofh+qx0uwupqmf/0b394Csv72JLr4+PYeV7bue1z59h8QyW06HYmXXkrGF19QUVFBdXU1Y6+5GuOggbQt+hzXd98R7/Bw5mY4c7MKFFP091O0/ch2O5mPP44UUcR0so5fT/w1t35zK28XvM1lIy4j9a678GzchH/fPpxLRIhI+iMPI5vNtPpbSVfEJN0CeLdupeyyywmUlxNuaU/0TJkuJnmBYJATkk7gs3M/Y+Hehby882V2NuzkmiXX8MFZH5Abm4skyyTfdBNVd95F8xtvknjllejsdsJtbTQ8J4rnjTdcyXetLwBwzpBztM+xTphA+JwF6D5bxqhXV1E9eyeZQ8ZinZyGv6wNKbgLz6ZNyFYrWU8/hS4uDuukSVgnTSLx2mtZ8puLyVuym5nvFdCY9S+SI6ELqqri272HxpdexLVc1F++PVtm5Rw3Z+l19LYkErUETkqbpC0CSJKEfeYM7DNn4NmyhVBjEzGnLGDOqmoWlyxmaenSLuQqCsN5Z/Cq92N02wu4IHk+OUocoeYWVL8fy4QJ2E48EXP+yE4K1fv73+eR9Y8A8Emh6MeUF5vHzKyZ3DT+ph7rmo43nt/+PF9NVIkfPo7c6QsI73qGZ7c+S5JZ1IAeTrmyGqyMSxnHlrotrKtZ1yO58gQ9rK9Zz86GncSb4smKySLLLv4dSYPbiorXSdX5uDQRdG4PPp8PnU5HWlrX+rzGijLCdVVgiSHYuBTSoKoxgyW+1fhX3s2j0+4BIBg8yOTJV+JygdW6lEAAYm3TWfS3P1O4STSr3p3m5eLRTzAzYzw1NR9RVf0ePl8llZVvUln5JrGxE8jMuJCSUvH7yMr6BcOH9y1q/Yciy57FdWOu+698Vj/60Y++oz/Q4kcOSZIYqQwBYKn7W/Y17+t2u+6UKwDLqCSQRJ1RsNaNY2kptY9vEhHtskTS5SNxZ4qEo479ro4VouTK5rGxYkV7Q+Da2to+vT/JksTEtIkAfHTwIy16O9TkxV/ehiMSrRxtYuv4qoSww48aUrSgimjPLxDkCkSohaqq7crVMUgKBGHjrHXXIlv0WmgCgHFg7/vX2QxYx6QA0Pjv1ah+FWQwZHQfsd0d/D6x8poc2/ekQGgnV263G0Xpvn9QRxh1RuYPECrn4pLFnV5Tg8EuaWw9IapaDUsYRpwpjvkD5qOX9Oxr3tdtDxfF56PyjjsEsZIkUu68k0GfL2LEtq0M/moxqb/5NQB1f/oT3t2it42qKFTdey/BqioMOTkM/OhDBn70IYO/+IIh36wg829PIpnNuNesoeTCi/Dt29cew27vvsdVyztCtYqZNw9DWppmS6qurkaSJGLmzCHrqb8xdN1asp//J/tPyKA4HcKpiUjR/cgyGX96BGN25wnsSdknMTF1Iv6wnxd3vIhsMpEVGSNA/CWXYIsU7zv8DkxhUZuUESGT3h07CLe0IJlMWCdPJuXOOxn48svERux9LS0tmHQmrhtzHV+c9wUTUyfiDXn5/Zrfa72jYk49FeOgQSgOh6bQNb70EuGWFoyDB/P1eAkVlclpk7W+XlGMvP9PuGIMZDaptJzzc2oe/D2S3EbM9CDNrz0OQPof/9glJlySJL49L48PZwiq1PDUU9Q+/DA1Dz1E4ew5lF50Ea7lK5AMBtIe/wvLZ8fSEmjt1MPIH/azpW6LljgIaOEaPS0AWCdNIvbUU5AkiVPzTgVEQ+Hu+mg5A05uWH4DS6Q9fDlB4ZaBq2i6+QKyn3manBeeJ/n6X2EZPaoTsVpWtow/rf8TIOoVxySPQZZkSttKeavgLR5c/WC34+oODZ4GDrYc7LHHV0/oLnjmYMtBvir5CiSJ8y79A5dP/CW/HC0WNJp8IuzjcMoVoKU3HmoNbPQ28saeN7ju6+uY8e4M7vj2Dl7Z/Qp/2/I37vzuTi754hJmvjuTB1Y/gKqqqKrKsmXLWLZsmTbeJm8T7+17j2ZfM6qq0ti0EgCrDM6a1wGhUOl0nZVzT5uDz554BKW+GoPBS3KKeEa0bU3mkhXZ+BZv54qXL6c6oAdUPvY+zCLjPwkE6pEkE1/+9R0KN61DlWHjiGaUOYM4JfcUTKY08vJu5sTp3zJ+3OukpJyGJOlpa9vGvv334/fXYrHkMnTIfX38ZvrRj378r6KfXP3IoYZVdC3iYVpmrOaZLc902abV10q9tx5Aq3OIQhdr0ghF3bNbcX5bgRpUMOTEkPKrMVhGJnXbTPhYwRvyolf02ApsKIqiPQj7Sq4ALh95OQBvFbyFL0YQwVC9R6QUKiKlMPma0RhzYlD9YVoWFQnyFFSQ7YZOfbeiNUyhBi/BSheKKwg6Savf+iFwBpxc9uVlnP7R6XxX8Z1IuYssq5vyDr9CaxkjviddgiDTirsG1HBvb9Hg8DuQQuLD0mK7T1rrCdEeSaqq4uljP59oauCysmVarxVVVam6626K5s+n+e23D7uPzXWCXJ2QNJFgXT3x5ngt6n1pSefUwLDDQfl114kJttFI1rPPkHz9rzANHarVWCX+8pfY581DDQapuuMOwq2tND7/Au7vVyGZTGT//bkuxf9xZ55J3nvvYsjJIVhZSemlPyd38U4MQbXbHldhpxPHos8BSLhcXJdRW9KhPXNkk4mYuXM589WlDP74E0Z/v4YR27YyfNtWhm1YT2yHRLsoJEniN5N+AwiVY1HRIoyDBpH93LMkXHkFqffco23bkVyln3suaQ8+QOo995D37jsM37SR3LcWknz9r5AMBi0xsKWDopVqTeXPs/6MVW9la/1W3tn3jhiDTkfyTTcC0Pzaa/j276flzYXiPffczWcl4vjPHXJul/HrYmORn/4Du3Il5LBC6wcfUHTqaVTeehuoKnEXXkDcWd14/oBaTx3vn6Sj5ZdnibG+/Q6t775HqL4eyWolZsECBrz5Bolnn6tdJ6uqRCT795Xfc95n53H1kqtZ8OECTvvoNO5ffb9Wb9UXdXVG1gzsBjv1nnotgKTjub7+6+vZ2bCTWGOsRkpvWXEL1a6uPeoANtZs5L7v70NF5cJhF/LMyc/w9plvs+rSVTw26zH0kp5vKr5hednybt+/u3E3z259lhuX38ic9+Yw94O5nL/ofBZ8sIBH1z/KxpqNhJTum9eCIGM3Lb+JUz46hTVVazq99o9t/0BFZUHuAkYmiVS5OybewXlDztO2OZxyBWjfw8bajYQjMeT7m/dz8ecX8+TmJ9lQs4GQEiInJocLhl7A6XmnMzZ5LIlmcT1+VvQZS0qXUF1dzZo1a1izZg1lZWWElBC3rLiFP234E+d+ei5LD7xKIFBHKMITw8FVxMbWd7EEhkMhvnjmMRz1daRnK4wa/T2yrNDmSEGt12MO6BhWEcPMdTGoe8S9YK7HwMnlYhGlpcRAW0MTlpREvphew77Bbu474bedbMaSJJOUNIuxY/7JjBlrGDz4XiyWAeh0Nkbl/w2d7tjU7vajH/346aKfXP3IEWr2QlhFNUi0mJysqV7TZZUwGmaRZc/CZvj/2Dvv8KiqrQ+/0zKTSe+9VwiQ0CFI7yoqoCBXwC727hUL9u5VsSD2igICCkqv0gk1kJBGeu+9TT3fHzuZEBKaWLjfnfd58kDOnLPPPmcmyf6dtdZvdY102PZqi2RIwsrdbU5PPO+NtdQAXai4Kmsq41DpoYuy4G4xthBbFYusRYajoyPjx48HLk5cjQ0cS6RLJE2GJpaX/wwIO3ZTdSsKFzUu0yKQyWW4TI8AuYzWk1XUbcgFhFnE6X8YFXYqlO4ietCwW/TdsfF3QKa6tB8FvUnPQzseIrU6FaNk5JUDr6B3MmM3xAeFsxrbniLVpn7zZjLHT6Diw4+Q2grpa1prSK04Sdm7CzDVFVjGNBanUPX1Nxd0/qLGIlRmUXviZH9xfacUCoVFYF1o3dUg70G4adyo09Wxv0Skz9SvXUtDW9+Zsldfoynh4LmG4HDpYSIKJSY9s57MUaOo/u57i2hbn7Pe8jnTFxaRN3sOLYePIHdwIOCLz3GcMKHLeDKZDN/XXxNCqaiIvNtuo3LRIgC8X3wBTVv/mzPRREURsuIn7K64Aqm1lYm/FfPRYhM+647Q0nY/bG1tMTU0UP3Nt0jNzagjwtEOEgv29gVeaWkpJlNXMaxSqIh27Ti33Nb2nJbVcZ5xXBV6FWbJzDN7nmH+7vkwpB/eTz9tMWswmU206FqQt/0Kt7O3x/Wmm3C7/TZs4+K6mHq097qqrq7utN3P3o/HBjwGwMIjC8mvF1bUjpMnYxMUhKm2lvy5NyMZDNgNG8Yv7nnkN+SjVWoZHzS+2/n3v2I6B5++kgWzFWRHOYLJhLmxEXVEON7PPHPW626PONndchM+r7yMOjIS5xtnEvDZp0Tu34f/hx+g7SvSottdAzfnbub+bfdz37b7KGgowF5lj1wmp6ixiF+zfqXZ2IyjjSNRrt0bopyOWqFmdMBoAJ7f9zzvHXmPnQU7ya/P587Nd5JclYyz2pmvJn7ForGLiHSJpKq1inu33ku9vnN7h9SqVB7c8SAGs4FxgeN4dnCHg6GjjSNXhl7Jrb1uBeC1hNe6HP97we/MXj+bL5K+YG/RXqpaq5AhQ6PQUN5SzrL0Zdy++XbG/DSGd4+826U/3N6ivVz/2/XsKdpDaVMp92y9h8WJizFLZk5WnmR7wXbkMjn3x91vOUYmk/Hc0OeYFT2LKaFTCHHqvgnx6cS4xWCvsqdOV0dadRqHSg9x68ZbqWipIMQphCcHPsnaqWtZN3UtT/a9g7dGvsUPV/3Azpk7uS/uPgDeOvQWh491uIYeOHCAb09+y8kqEZWs0dWw8eTbAKS3yjnaIsRLWPhBfH071679/t0XlOQcIWhsGf6jD+PgUI7JpECtnskDXy7l+mdfoceYcagdHWjKFeLK07MFbx/xUKk+14HSYNg+qp4qJz3TI6Z3+tk9E7WNO8FB8xg6ZDsjhh/Byan7tH0rVqz8b2GtubrMsTSf9bLjhqgb+DHtR9478h5Lr1qKXCan2dDMmsw1QNeUwHbsh/hgbjag8tBiG+vRxbjhfOKqqqWKL5K+4Kf0n9Cb9cyMmsnTg58WheznoT63nuDGYACmT5+Ouq0vT2lpKdIZrlxnQy6Tc2/svTz8+8N8k/UdU2zfgxYTyGW4zoq29NVSedvhMNKfhh0FFkMIzWkpge3YBDlirGwRqZF0pAr+UUxmE0/tfopDpYewU9nhYONAaVMpHx37iCevfRLaylJ0OTkUz38KqbmZykWLqNm2ha1ze/BV81amb23mugMS8jAldr1FRMRUk0vlotU4Tpxwzqag0FlcndmP6UKwt7enqamJ2oJCSzPOc6GQK5gUMokfUn9gfc564tU9KH1F9IVR+flhKCqi6KGHCF65skvqG0BlYzmx609xw24zCkmkIZW99hp977gVtZcNufW5pNekE5BZT9FDD2OqqUHp6UnA55+jiYrsMp5lXo6O+L+/kNwbZ6FLSQXA+caZOF933bmvx9mZgE8/oWLlT6S++xKedcD7X1EyJAWCg2hdt46Mp5627O88a5bls+vq6oparUan0wn75/PcP7PZTFNTk8UCvzteHfYqIY4hLD6+mPU56zlecZw3R7xpqQWq19ejMYn32cbGBtU5TB2gQ1ydHrlq5/rI69mcu5mE0gSe2/ccX038CrlSidvdd1Py1FOip5ZcTsXtV/Hu0RcBEeXQqs7+hP7xAY9zTeEu5gc08477/cRlGHCZcQNy2+6dLE1mE+XNIvrurfXG+fpYnK+//qzjD/MT7mtZdVlk1WWhlCuZ03MO8/rMQ5Ikjlcc50jZEVKqUpgYPBG5TI4kSSQnJ+Po6EjQWX6epkZMZW32WnLqcsipy+ErvrK85qpx5fMJnxPpIj5/i8Yu4qZ1N5FVl8WjOx7l6rCrSa9OJ6Mmg6TKJFqMLQz0HsgbI97o1vRlXuw8tuRtIbc+l4VHFvLc0OcAEfF67PfHMEkmhvkOY3TAaKLdoolwjkApV3Kg5ABb87ayo2AHNboavk7+mh9SfuDa8GuZ3XM2v2b+ypfJoplypEskPd16sjpzNR8f/5jjlcctkearQ68m1LmzCYJSruTpwU9zoSjlSgZ6D2RHwQ4+TPyQQyWH0Jv19PPsx4djP0RtVLLrh89Idf8ZlVMRMT3fw9tbNLe9rddtrM1eS35dPscyj1nGTEtLY2vzVlDA80Ofp7y5HGXJQgBSWxXUKoPpbcjC3r4GtWYfINLGE7f9RGn1V/S4sRqFSjyYcXe/msaG8QwYMB65QkFQ7ziCesdhvtNEUVoyp0rmolA3ovUQKdUbwhWkSnnQBA4qB+7v2yE+z4VMJkMmu7CWGVasWPn/jzVydZljKBVPzpUettzV5y60Si0pVSmsy17HiowVXPXLVazJEuJqVMCobseQKeU4TQhG29ezW0e8KJco5DI5FS0VnZ6A1unq+ODoB0z+eTJLUpegN+sBWJ6+nAV7F5wzJQVEFESXLP5o2UXbERQUhLu7OwqFAp1OR+05GpWejmQwMNpvJNGu0TQbmyl3EAtExwlBqM8wfHAcE2iJTIGIXJ1JezPhtrYgl9TfSpIk3kx4g9y9m5izQ+KLb+34zyZPNDqJH9N+tNSESHo9xY89jtTcjCIyHL2dGlNaBlcsWMMdq4WwAlgUc5BGeTMmTFS5NyHpdJQ8/8J5o4WFDYWoTJcgrtqOyX7+eep+E2lfBoOB1NRUjMbu3+f2KNP2vG0UPv8c5ro6ND17ErJmDZpevTDV1lJ4332Yz0g1NBQXU3DLbdy4y4xCAserr8a9zZWu4YuveeZ3V+RmieTP/0P+bbdjqqlBExND8PJl5xRW7Wh69sT7+edAJsM2Lg6vp8ViUZIk6nR16E36bo+TKRQ0TRrCQ/MUfH2VBqWPD61t166sqRX/ennheOVknKd2pE/J5fKzpgZ2x9atW3nnnXfIyso66z4KuYJ5sfP4ZtI3+Nn7UdRYxM0bbmbar9N4cPuDvHP4HWxMIjqlPUcD4Xba0wLPjFyBeHjxQvwL2CptOVJ2xJIe6DTlalQBoqbKZupVPFqwEJNk4urQq5kVPeuc5/O28+auPncB8HrTSrT33YGqG8vsdipaKjBJJpQyJe62568Z9NR6MsBrAADxvvH8fM3PPNr/UexUdtjb2DPMbxgP9nuQT8Z/wtQI8V4dOHCAVatWsWTJkrNGaAd6D2TD9A28POxlpkVMI9gxGAAPWw++mviVRVi1X+OicYvQKrUklCawYO8ClqQu4WDpQVqMLfRy68X7o98/a88utUJtEVQrMlZwpOwIyZXJPLD9AfRmPWMCxvDR2I+YGT2TWI9YtCotNgobRviP4KVhL7Fjxg4+GP0BcR5x6M16VmSs4NrV11qE1cyomSyZvISXh73MK8NeQa1Qs7doLwdLD6KUKbk79u7z3ucLoT01cG/RXsu8Px3/Ka3Flfy44AGaNF+ichI/F7l5iy2/y2wUNjwz+Bk8WzxBD2pbNcHB4n4H1gZyhd8VTI+Yzl295hDWdgtTWxR4ycLIzYkDoKzsM6qq97H/95upMD+Nd78qFCoJJ6d+DBjwM7F93mfYsKstD/XakcsVBPSMxcu7wyHXwaE3n81Yw7jAcchlch4f+LglfdGKFStWLgZr5Ooyp2H7dsw6L1oSkvCdege39rqVRYmLeHpPx9PFAIcAHur3EBOCRKqUZDZjLC1F1Y1FbXdoVVpCHEPIqssipSqFMFMYP6T+wC+Zv9BkEDbXvdx68UC/B6htreXpPU/za9avtBhbeHP4m6gU3T+xy87OBiPUqeoIjgkGRL8gDw8PSktLKSkpsTxRPxutaWkU3H0Pcjs77nvxFh6ofpHnXD7k67Gf4tCna8G1TCXHZVo4FZ8nofKy69LbC7qaV8j9u3+a3nLiBJJOh3Zg9/UahrIy9rzyIKP3nWCqxQ28GEVeMe/lOTH/ukZe2P8CS69aStW779GakoLRXsPDk0toNhuZt0FG/0yJkclti425M7nqX0PZnJZEQvZ+6vzyeDtNTfOBA9T9shrnaVO7nQdAfkkGNmax2LYxGDDrdMhsbC4oMiiZzchSU0GrpVVtQ/GT80GS2KLXk5yczNixYxk+fHiX4/q498HP3o/ghAJatv+OWSGn5cnbkdtp8f/oQ3KuvwFdejrFTz2N2+230bhnD0179tJy/Dgak4kWGzh5yzDmPCpSfpTeXpS+8CLRewt5LwV8akSdiO3kCQS+/iby00Rjg76BwoZCIlzE0/wzcZ4+He3gIai8vTDKJdZm/WqxOQexsHWwccBZ7cwDfR9gTKCwXy5pLMGkkHFqRDBhry/n4OLFUFOD96wbiZww4awNW319fcnJyaG4uJj+/fuf9V4bjUaOHj0KQGpqKmFhYed8b+I841gxZQUv73+ZDbkbOFVzymJe42MSrpjtKZ3n4lyRKxDmBY/2f5RXE17l/aPvYzAZmBoxFb9336Fm3VqejUikurGaKJconhv63AV9rub2nMsvp34hvyGfT098akk/zKjJYFPuJjQKDbf0ugWVXGVJCfSy87pga/+FoxdS3lxOuHP4eedz6tQpNrelrBoMBvbt28eEblJLQaRK+oX7WWrKaltrsVHYdBupi3aN5r1R7/H6wdfx0HoQ5RJFpEsk0a7RRLpEnvdaBnoPZHrEdFadWsWCvQuo19fTbGxmsPdg3hr5Vref7XaUciWjA0czOnA0R8uO8mXyl+wq3IW9yp4XhjyPaf1Jvv7idma++CbXhl9LtGs0j/z+CAUNBUyPnN7FjOSPMtRnqOX/10dez9ODnib19+3sXPIxgeOysPdpwWSQAxJNTRnU1Oyz9H0a6juUIZIwxSh1KMXJzwlyIbwulNHNIqOiunovYMLWNpgFw59GUazg96M7CAoqwEZdTGLiHADkCjA1eRI3+AU8PCZc0GfUzX0UpWWrAXB3H4uzxpn3Rr9Hi7HlD/VmtGLFihWwiqvLHodR/iLiYTBSUH2I2QvfYlnaMqpaq3BWO3N37N3MiJxhETjGmhqKHniQ5sOHcb3tNjyfePyC/sj0dOtJVl0Wrx98nZKmEosjVYRLBPfF3ceYgDGWcTRKDY/vfJycfZv5KCGPqbNfws87sovIKisT/WgqNZVobbSYW1oo/veTOKiUlDo6UlpaSs+ePc86p5YTJ8i/407M9aIewX/+pwyZG8YBeRZLjD/ziOyRbo9Thzrj9Uj/s9rEK1xUmCU9cpkNtcYSpqyOJ6JtQXSF3xWMDxpP7YoVlD7/AkgSjtdMwfvZZzstrBu2biX/6fl41wtVZdSqcR0zHm3/flR8+BFu+dW8+r2cl2eksvaHl4j6ZgUA70zSU6yV08cjltBP78X7QCkV77yL3ZDB+D65gDCFgglBE9i/7l/kVelIuTaOnssPU/7mmyicnbEbMhh5W6TCYDawe9s3lH/3LVefqOW3qSKNqmDSZEqNRhSurgT/+AM2bU+Dz0bl4sWocnOhZ09MkVGQmkbSm2+RPF481c3MzOxWXMlkMh4NuQ3nV54HYEU8rEp7Er/CD5g/aD6DPviAvJtvpmHTJho2dTaoyA225Z1Jev59XYdlusuMGShdXSl69DF8avSYgaWj5OwadJQH89cyLnAcOwt3sjlvM/uL92MwGwh2DOauPncxOWRyl4Wo0cuFFaeW8+3Jby29q9rRmXToWnRUtlSyYO8C+nj0wd3W3WLD7mPng9zGBpOLC9TU4BgRcVZhBR11V+2NTc9Gdna2xYHwQqJcIJppvzXyLR7o9wB59XkUNhRS2FBIVWYVlF+YuGqPXDU2NqLX67HpptHyjKgZbM/fzv6S/bxz5B0+SvyIq0KvQjdMx6HsFBxsHHhv1HsXvOi0Udgwf9B87t12L0tSlqCQKdhZuNMicAH2FO3hPyP/0yGutBduxuKkdrogK++KigpWrlyJJEn4+flRVFTEoUOHGDZs2AXdO2eN8zlfj/eL57epv13otAEhrNPT05k8eTKP9H+E3wt+p6BB1Fv2du/N+2POHvHqjn5e/ejn1Y/9J/bj6+3LqV/Xkrx7B46BDSRsfJkrb/+MKNcofrr6J46WH7VEm/4Mgp2CmT9oPiq5iulh09jy6Yek7d9M6JX52Hm1olDY48I9ZCR/gUevGtJTPmDoFUJc6XQ6NNUajBg5pjzGrrwdTDFOQq7UcmD9FvTFlfiPED8n7m6jiAway6/HfwVk1JWMxi3gR2RyifpcRzxcZxI/5TEUygtPz3NzHY5MpkCSTLi7j7ZstworK1asXApWcXWZ4zhhAorPP6fwvvtoPnAA8+338Mmbb5JozOHK0Cs79UjRZedQcM/dGPJEUXr1V1+ByYjn/PnnFVg93XryW/ZvFDWKP2TxvvHM7TmXeN/4LsfGN3rz9ZYwbA4mAynUfXc92yJlnOjvSl1cKMODRjK351yLuKqzqcNWZkPRo4/RuGMH9hER0L8fBUePIo0e3e3cmg8fpmDe3aLRamwsxtoaDHn5PPSlK1nTJJamLeXmmJvPmrah8uw+Vcrc1ETBQw8hmQci9+yJtjCTe7P1LL4qhdTqVH7J/IVXcwYQsazDNKT+199oTjiIz6uvou3fj7I336R22XLkQLY3FNw0knk3f2AxEbAbOpT8O+7Es7CQV74HEMJqQ38Zp2KceWnA41wXfp247ungPG3aGW5UMh7o+wDzts7jzZCTLIkMw5SRReG99yJTqdAOHEBWoJqWPXsJKTTgAzS31bLIzGaUbalspupqqr79Fp/nnz/r+964ezeVHy1CEyEcCunfDydbDdsqOtJDCwsLMRgMnep6JEmi9fhxot79jeYW0IX5UT8zBk3pPooai/j3rn+zYsoKvJ9/niOLP8azpRXX/v2xu+IKjAN6MWPPTEBGf6/OUR6HceMI/OZrqr/+muLRvUiSr6emLpsX97/Ii/tf7Pwey1Xk1ufy9J6n+fTEp9zZ+07USjXHy49zouIEKdUpltRVN40bs3vO5obIG5DJZDToG2jQN7Bg7wLSqtN46+BbvDXyLYsI87UXYqldCJ0v1bLdjr2srKzLvTqdkyc7rMPPt++ZBDgEdIo27GrZxfb07ReUFmhra4tGo6G1tZWamppuewPJZXI+HPsh67LX8WPqj6TXpPPzKWEgI0PGm8PfvOhGscP9hzMqYBS/F/xuSVdTyVXE+8ZzpOwIR8uPMmPtDMvnwMf+/L3v2qmoqECSJDw9z96br7m5maVLl6LT6QgMDGTu3Ll8+eWXlJSUsG/fPovBzt+J2Wxm7dq1NDU14eHhwbBhw3h2yLM8tvMxQp1CWTxucbfGROcjKSmJTT9vwslWg/noHmyc9IRMLEQmLyQvYyNBkZOwt7FnhP+Iixr34ME95Oae5KqrZp9VjLY7um7/5lNO7tpKxDUF2Hm1olQ60TfuWxwde1ORUwp8T5PuMBXFx/Dw7WtJO1bZq6hX1DL2iAe25gp03kEYXL1I2rEJeVAecjW4uY3CZDSQlZEOQO6+bCpkofiERTNm7r9x9T2/dfyZqFTO9OzxHwyGahwdel308VasWLHSHVZx9V+A3ZDBBH73LQV33kXryZPY3P8C1771Jmqp48lmU8JBCh98EHNdHSo/P5yuu47KRYuo/vY7JKMJr2efOafAujL0Sn4v/B0/ez9m95jdxdIdQJ+bS8UHH1C/fgM2gKRQUO2iwK1ST3yqRHxqFbW/VLFy2BFmjv6NQSUi3aNOVYvPojU07jiATK3G20sshsrKyih68CF8Xn4JhbNzx7Xs20fBvfchtbaiHTyYgI8XYWpsJH/uzejz8nh1qYrnZjbz3CczmFThQ+ipRuQZuah8fFBHRaGJikQdFY2mVwyq0xZexqoqCubdTWtyMpJfI3JXD2QFe7iiSmKgLIgt8/ph+mEVEQlCWLnNuwv7UaMomf8U+rw8Cu64A6WHB8Y24bFmsIx9VwWzbOq7yFQdkQCb4GCCl/5I/l3zcEoVpgq5nlB5+1X8OnQ+brZune5rd+/LUN+h9PPsx9Hyo6y5uzdzDg+icecuDEVFNO3bj/e+tmtSQOXQSDxm3gl7D2Nrb0+PE8dpSkig4M67qF/zK56PPYairZdVp/ezsJCix58AScK1rygKb2xqonbGDCp/+gmF0YjCZEKvVpP05puE9e2LJjqapv0HqP3pJ3QZGWL+KhXR7y7i3agomg3N3L/9fg6VHmL+rvk8FPgQe4YPx93dndtvvx1bW1uL9XSYU1iXewGg7dcPbb9++AMrzbexLG0ZHyd+TKOhkXDncCYETWB80Hh87H1YmraUb09+S159Hs/ufbbLWIEOgdwcczPXhl/bKRLQ/lDihfgX+Ne6f7EhdwNXh11t6XHlbSdMKdqt2G3PYsTQjpOTE1qtlubmZsrKyvD377rQMxgMpKWJPnUymQyz2UxJSQmBgYHnHPtstNvmX0j0BURqYElJyVnFFYh0yWkR05gaPpVj5cdYmraUnYU7uTf2Xob7d41eXgjzB82nrKkMZ7Uzk0MmMzZoLI42juTV5/HwjofJrM1kU66IbHprz2+mAuJ9+fzzzzEYDEyYMIEhQ4Z0+TkyGo2sWLGC6upqnJycmDlzJkqlkpEjR7Js2TIOHjxIfHz8Oe9fWVkZS5YsITIykilTpvyh6z+T3NxcmppExPvo0aPEx8czLmgc66etx1PriUp+8cYIZrOZnTtFH6i6lla0alv6znBGJxd1fekprxMU2dX6/3y0tDRTVPwErm4VbN5SwnXXPn/WvyMntm7k2IbfcO9Vg513C0qlA/36/oCDg7B6HzPnKTb/shGNRwUHtvyb+LFfcuLECQAGxw3CsO4wDlUGFJpGJJUKPWAbbItc3YLZqCB7fwlHN8yjzj0AZDLsFHJG3/gEMaPGXVB2xtloN9iwYsWKlT8Lq7j6L8E2JoagH5ZQcPsd6HNzyZ0xE+RybAIDsQkOpnHPHjAasY2Nxf/jRSjd3FD5+lDy7AJqfvgByWTE+7nnOjW4PB1XjStfTPjirOdv2LqVokcfQ9LrQSbD8aqr8HjgflSBgbSeTKHs5+U0r9+Ec209d2w2k5qaw4lhcQBMOFiL3b4DIJfj9967BA0Zwoa33qLZzo7KTZtpnjgJuZMTUksLZp0Oc0MDSBJ2I4bj/8EHyDUa5HZ2BH73Hfk334xzbi4ffApQ1PYlvCn0OTnoc3Jo2LjRMm+lry/auDg0fXpT8+NSDPn5NNrKeG1sMtdPncJ10xdQ+OBDqE9mc838UszNov7puzFy7Ic281RcLCG//Ez5u+9Rs2QJxooKjC4OvD6xiZRQFd+NfqPbWgylhwdB339PzhOPUJt8DJc3nuS1+LO7n51Je/Tq1k238mPlRmY98hthCxbwy7aPOPjLJ0QWSXjFDmH0va/S28uH/Px82HsYjUaDzMYGuyuuwCYsDH1WFnVr1uDa1pOpHUmvp+jBh4QJRe/e+M+ZDUuWUFdXx9atQvzEqdVUZGeTHxRE1rFEbJf80HmOajWOkyfjevNcNFHC6lqr0vLaFa8x7ddpJFcmszlN1LlUVlaybNky5syZw6HSQwAM8B5w3vugkquY03MO0yOmU6+vt4iedu7ofQezomexNG0pqzJW4WDjQKxHLLGescR6xOJv73/OhVeMWwxzeszh25RvefnAy5ZIqK/dxUWuZDIZvr6+ZGZmUlxc3K24ysrKQqfT4eDggK+vL+np6RQWFv5hcdW+QL9QceXq6kpJSQmVlZXn3Vcmk1lSzS4VP3s/fpryU5ftQY5B/HDlD7yw7wU25G4ARDpmd+hbW9j+9aeYjUYm3P0QJ0+eRK8XxiSbNm2iuLiYKVOmYGNjgyRJpKens2XLFqqqqlCpVMyaNctyn6KiovD29qa0tJT9+/czbty4bs+p0+n46aefaGho4MiRI/Tt27fb9/ViSU5Otvy/qqqK/Px87BVyVEYDquA/5jiXmpra6X31HNIbveJHkEAyg8KxkNy03wiOvjiBeCzxcxwdhYujVruMxMRB9O17ZZf98pNPsO2rxajsDPjHi7q+8LAnLcIKQGWjpveApzmV9whqr1y+efZ+GoL6gkxGyZ7tOBQbUKk1THvqBU7mFbJ//348+wvzoYYiW05s/A6TrR14yFArlcxb+Ck253noYcWKFSv/BFZx9V+EOiSEoKU/Uvr8CzQfPYq5vh59bi763FwAHK+cjM9rr1kK/52nTwe5gpKnn6Z22XIwmfB+8cWzCqyzUbvqZ0oWLACzGe3QIXjNn29ZTAPY9oohuNdLSE8toGbZcsoXvoerTkRKVK2NTNsnrH99XnoRhzHCOMDFxYWamhoaoyJRJyULu+fTcJg8Cd8330R+Wm2IysuTwO++Jf+WW9FnZ2OytyUv0oldPnUk+ehxaZAIKoegcongcgn/SjAWF1NfXEz9+vUANHs48MzUZjShocyImoFKriJ42VIK7r4HQ0EByOUU3XcN6+zXIaUvw2A28FC/h/B+9hkcJoynfM927nZcQ7FKzrzed9DHo89Z75vC3o7wxZ9dsOX8mQzwHkC8bzz7ivex+PhiBnkP4vmiz2CQHP8+87jqNJvgM5vdymQyXGbNouyVV6hZuhSXf/2r0xyqvv6G1pQUFM7O+L+/kLq2+9zu4GhnZ8eEBx/k2K5d5O/dS02f3mjkclrT0lAHB+M8YwZO10xB4dS15sXbzpvnhj7H2xvextxoRqFSoJApyMvL4/WvXmeleiVwYY1d29GqtGe1/rZT2XFH7zu4o/cdFzze6dwbdy9b87dS1Fhkqf3xtffFbDZbxNX5IlcgUgMzMzPPWkvVnhIYExODnZ2dRVz9UdrFlVarpbW1mOzs99BqQwkKurvbz1tAQAAnT57k+PHjDBs27JKe9v9ZaFVa3hzxJn29+rKrcJfFWOR0Whob+OX1FyjJFOlgWmcXstoMH4ODg8nLyyMpKYmKigpGjx7Nvn37yMvLE/tqtUydOrWTPb5MJmPkyJEsX77cEr06M7VSkiTWrl1LVVWVZdu2bdu4+eabL+l6jUYjqW3RbA8PDyoqKvht6RJ0iQeQIePGl97CN/LsfZW6Q9/awvo1qwFQNDVgsnPAxvkwkmTAxXkIFVm1KN3SyEh/86LEldmsp77+O1QqMJnUKJU6ikueISioD66uHSKzprSY3957HbPJRMw1RpDpcXLqh6/vzC5jBoROIa/oPfTk4xanp6FWhry5kfK8NJQ2aqbOfx7/6BjsvHw5cOAACmVbpFcXhpOnC8794knOKyAoNNQqrKxYsXLZYhVX/2WovLwI+ETY2RrLK9BlnkKfmYnS0xOHiRO7CCfnqdchU8gpnv8UtStWIhlN+LzyMjLFhTlyVX35FeVvCzc3p+un4/PCC8iU3X9sZCoVrnNm4zBhArnvvgOAZ2UtAPb339Wpb423tzc1NTXI7r+fIK0WFErkthpkbVEq1VnqKFSenoSsXIG+sBB1WBi9FAommAwcLT9KSVMJzYZmWowtpOjrefX4j/gVNBNf7cakxlAkhYzH+h6jSitj0YDHLek36rAwgpcvo+qLL7GLj6fHFcN4JWsoC/YuYNWpVaw6tYoQpxD6efYju0c2xeWN9HTrybzYeRd0Dy9lEXt/3P3sK97H2uy1rM1eC8DsHrMtDTjb6S7C4nTtNZS/+y76zCyaDx7CbvAgAAxFRVQuXgyA19NPofL1xUGn6zTemDFjUKvVhMXFwd69lCsUBCz9EYVCcUHXMyl4EvtMInex0LGQCQMmcHzTcSiGHk49CBsYxrjA7iMGfzdalZbnhjzHvK0d76e3nTd6vd5iG30h9vbnMrUwGAykpwtxEBMTg6GtgfSFmlp0hxBXEpK0hwMJn2MyCXvx5pZcoqNeRX6GwUdcXBzbtm2joqKCnJwcQkNDuxn170cmkzErelYne3dJkmhpacHc2sLKVxdQVZiPja0t+pYWDm1aT1N4b2QyGdOmTaO6upqffvqJ0tJSli4VNvJKpZKhQ4cybNiwbt+76OhovLy8KCsrY//+/YwdO7bT60eOHCEpKQmZTMbUqVNZvXo1OTk5ZGdnX9J9y87OpqWlBTs7O8JdHamoqKCyuRV7mRzMJrZ89iGz31iIXKEkNTUVV1fXc/ZNy08+wZqvP6PJwR1MJvqG+JNtasbdQ4iS4OB78XZWcTLrXygcSshO/ZnQHtMuaK5paZ+iUtWi19syoP9KjhydhUZTz4EDtzFx4joUChV15WWsfutlWhsbCBrigMIxFZlMSXTUK8hO64OYmZlJQkICbm5uuLhehb5xMV7R5eQeMNMzKhJtgDd9xk3Cv4eoe3JxcaFXrzAcnUQKdr/JTxN09wBWrVoFFFh+1qxYsWLlcsQqrv5LkclkqLw8UXl5wrBh59zX6ZprQK6g+N//pu6XX8Bswue1184psIw1NVR/+SVVX4gidNfbb8Pz8QtzHlR5eaKLj4djx3DXaHC6dx4+9z3UaR9vb29SU1Mpq6pCO3LkBVxxB3KtFk1kR78ZlULFYJ/BXfabGDyR+7bdx2ctlazWFhDgEEBVmWjMOdyvc/2I0tUVr38/Yfn+mrBr0Cq1fHTsI7LqsixNRUHUpbw+/PU/VBtxsfT26M3ogNHsKNgBwNTwqTwx8Iku70N34krh4IDTNVOoXbacmqVLLeKq9PXXRT3bgAE4ttWRtDeiNRgMeHh4EBcXB4C7uzt2dnY0NTVRVFR01uarZ1JdXY28UiyuTtieYF/GPoLcgxhQOYDoumiu1lx9wZbbfwfxfvFMCZ3Cb9m/oZQp8bD1oLa9t5VSeUGmE+0LvsrKSnQ6XafeOqdOnUKv1+Pk5IS/v78lpa2uro6GhoZzNhQGaG7Oo7pmLxq1D1ptMBqNH3p9BT1jdlBdIwSavV0UTc2ZlJSsxGioIybmfRSn1ZlpNBri4uI4dOgQCQkJf5q4qizIY9PihUQMHsbAa6b/KRGxDRs2cPDgQVwaqjAW5mPv4sr0Z14mcfN6Dh4VDWeDAwNxdHTE0dGRefPmsXz5coqLi+nTpw9jxozB+bQ6zjNpj1799NNPJCQkoNFo6NWrF05OTpSUlLBhg0hTHDduHH369KGwsJCDBw+ybds2QkJCznmNZrOB0tI1mCU9SoUdCqU9SoUdDg4xlpRAeXU5SYd3Ig/piVmjJeb6OeRs+JnKgjwO/fozMr9gNmzYgFKp5OabbyYgoLORiFGvZ8c3n3F820aag0XqXa/oSK6+aQ7btt8PmNDrfHFxiUfmKiPpcA/k7ilknvoPQRHXUJyRStaRg+QnHwezGbWdPWo7O9RaO7ROzjh4OFIl/wy5AlpbxuPhEU2P6A9Jz7gdtSaLPbsfxpTTh+NbNmA2GXHwcsZrQBZ6AwQG3om9fUdmQ15eHsuWLcNoNHLq1CnkciODBttgY1OHu0cRV86a360py5AhjqSlSzQ3O7J8+XZuuSXQ8uDC7xw906xYsWLln8Yqrv5HcLr6KmQKOUWPP0Hdml+RTGZ833gdU0MDutRUWlNT0WWcsqQZnp6m5/n4Y7jdcXEpV+1OgVH33otvN3br7U9jS0tLL+Gqzk1Pt54suXIJ9269l+y6bMqby1HIFDw+4MJE4rigcYwLGkdtay3Hyo9xrPwYadVpTIucRqjT3/fU/+F+D3O84jjD/Ybz/NDnkcu6pnWerTbIZdYsapctp2HrVgxl5ejSUmncug0UCryeW2C5DzKZDA8PD4qLi5kwYQKKNuEtk8kIDg7m5MmT5ObmXrC4OnRI1FV5BnrSomwBCYYMGMKgpkHs272PjRs30qdPH2xsbKio2EJV1U4iIp5Fobj4Bsh/Fk8MfILsumx6uPVAIVdYmvyezfzhTBwcHHB0dKS+vp7S0tJO9+r0lECZTIZarcbT05Py8nKKioqIjj57KpjJ1MKxxLm0tp6eQiinR08ZCoUJmUxFWOgjBAbeQWXldpJPPkhF5RaOn7idPr0/QansMDPpGxfLoUOHSE9Pp6am5rx95i6EnUu+ojTrFKVZp2ioqmDMLfMuOvX4dE6cOMHBgwcBqLV1xNfblxnPvIyTpxcjZt/KgTyxwDYV51lSbp2cnLjjjjssUaHTMZtN1FdUUFNcSE1JEa6+/gTH9Sc6Otpizb5lyxa2bNmCn48P1ZWVmEwmIiMjGTpUWJYPHz6co0ePUlRURHp6+jnfr8ystygo+KrLdpXShdycUYA9ppJ8HJycCY3pyYmsXPIrqxh9852s/+gd9qxbjTrOgT6xJ1AojCQc3EFNbTwuLhE4OcahVoax+u2XKUxJxmTniNnWDpVKxeTrpmEw1CGX78JshlOnIhk8uAZXV1diB71IUsYMFPZlfP/8FKoyz/1gw3tgBd79mmludiRjXRlf7bwLN/8gDF4TcfFbh9G8kUbNLnzjbdBqwvGPc6S6vhxbTSAhwR1R9fLycpYuXYrRaCQ0NBR3d3eKi4spK43CPyCJ6Oj9lJd/Q0DAbZ1+9hsa0ygp/R4AvS6C5uZmvv32W0sqrDVyZcWKlcsZq7j6H8Jx8mSQKyh67DHq166lcfduzGfUOp2OytcX9/vvP2fz2u4wm82Ul4si6LMtTNvFVUVFxUXZUV8sfvZ+fDf5Ox7a8RBHyo5wY/SNhLuEX9QYzhpnS7POf4JQ51B+n/H7OQXh2WqDNFFR2PbvT8uRI9QsWUJ9m9mH69y5naJ/ADfccAMNDQ1dDBaCgoIs4mrkBUQZ9Xo9x46J6MK4K8Yx1n0sMpmMSJdIJEkiJSmF2tpacnNziYgIJy19AXp9BY6Ocfj6Xrjpx5+Ni8aFZVcvs3zfXhtzrl5sZ+Lr60t9fX2nKJ9eryejzVkxJibGsq+fnx/l5eUUFhaec7Gek/Mhra2FqFSuqNWeNDfnYTa3oFBAQ4Mrg/t/hI+/iNx6eIwnNvYrTpyYR03Nfo4em4Ov44sUJJ8k70QiJafSUPiGYrJ3IuHAASZNnnzhN6gbSjLTyU08gkwmR0IicdM6WhsbmXTvwxfVb6idiooKfv31V/GN2YykVOE3fgpOnuL3SElpGUa5AswmqpOOk7h5HX0nXg2AXC7vJKzqykvZ+PFCSjLTMbWlYbbTe+xERt98FyNGVFJSeoiC/OFkZbVSVCLcIuVGA7HBAcjbRKKDgwNDhgxhz549bN++ncjISMtrp1NZ9btFWLm5jcZs1mEyNdHaWoReX0l0z02cODQaP39/pj6xAFQ2nHznHUpKSnCaMoXgocHgfxhn14rTRq2hoiKX9u4Itak9KEwBla0ttnFDaKmuZsCAAdjZ2ZGT8xFmcxMGgyfV1f4cO3aMsWPH4h3cj+MHeyN3P4Fb73xaa3sS1HMgIX2HoLF3QNfUhK65kdbGRhrr8zB5fwpAbmYfFA1V1DTUU1NSjAQ0jIkmMCINe69m7L2agcNUi1aEREW9iEIhfgfV1dWxZMkSWltbCQgI4MYbb7T0V2ttncqxxNtobk4mK/sdioqWEhb2BDZqD/LzPqOqehcAMpmS4cOfoKzskOVvirOz8wWbuFixYsXKP4FVXP2P4ThxAjLlQgoffsQirFSBgWh69EATHYVNSCg2IcHYBAYi/4MFw1VVVaJ3iUp11ifjjo6O2Nra0tLSQkVFxV/6JNJJ7cTnEz4nvTqdnm4XvlA+k5aWFsrLyy84evNncr5I27lc7Vz+NYuWI0eo+vxzAJSenrjfd1/X/Vxcun2/gtuaEBcUFGA0GlGepeaunRMnTtDa2oqrqyvh4eGdFqEymYzw8HAOHz5MZmYmXl5N6PVi1VhTs+8fFVen09TURG6bUczFiqu0tDTS09MJDQ3F09OTU6dOYTAYcHFx6fQ59/cXi99zmVo0NqaTXyBSc3v0eAMP97FIkkRxcQo//PgZzQ32lKz7kBsWeOMeID6Xri5D6dd3CceO3UJDwwk2r7mPmlMdxiM2NeW02DtxMOEAV8QPxd7J+SLuTGcOrBJitOeI0QTF9mPjondJ27sTXVMjVz74BHKFArPRhNlsQq3VnlNw6fV6lv6wBKPRiKKpHg8bBaVyO44cS2RI/DBcXV05fvw4AAGeHtRnGdm99DM8AoMttTrttDY28vPrL1BdLO6tQqXCxccPB1c3co4fJWnbJhp023COSQLA1yeblhRfKutCwN4JZWk+G98/TnlGKsNvuhWlSkV8fDyHDolFfnJyMn36dDaz0ekqSEkRqcX+/nOJihT95SRJYt+qL2lWfYjWoZHY/rsZMWo9Wjtx33v06EFW1j6Skh/Buc9hAMwmObaMJij6WnbsWIlEBa4uzWjt8nDukYqvOQjnoDtIOJqIQqEgPj6e1tYSCgq/AcDNbQ5QTmJiIqNHj0YulzNk/EIOHZmI1rOViOlHgaMU675GaXJAo/HB1isQ1+BAbBpTqaoyUVfnQY9esxl6ywAq8/OoLMijsiCX2to6jh6JRqutpG9fT+zsamlqzsLDYzxubqKHVktLC0uWLKG+vh53d3dmzZrVqXG1RuPGkMG/UFb2G5lZb9GqK+ZkyulN4eV4ek4iKGgejg69mDu3B19//TVVVVV/imOjFStWrPyVWMXV/yAOY8cSuvoXTDU1qKOiUJyn3uNiaU8J9PT07PbpLohFto+PD9nZ2ZSWlv7laR4quYpe7pfWJHLt2rWcPHmSGTNmXNSC++/gTLfA03EcP54yNzdMbc5nXk/NR2F/4U9+PTw8LD2ciouLz2kdLkkSCQkJAAwcOLDb9/90cRUZ1dFUt7pm3x92VvyzSUtLQ5IkfHx8Lip1rr02Ji8vj08++QSNRmOJyranBIK4T+11I8XFxZjN5i73SpLMpKU9gyQZcXMbD1IfJElC19zE1i9/pNnsgsyoo7mulp9efIrrn30Fz2CRrioz+FKV4oFTVB1uPepxd51MUO++BPXpS01pMd//tAKzSs23b73Grf9+Gm2bwGpsbKSgoIDy8nIqKiooLy/HYDBw4403dolCl2Vnkn30EDKZnEHXzcDV1w+NnT2/vvMaOYlHWHTbjZ3219g7MOa2u+kxbCQtLS1IktSp1mbVsqVU19YhMxoI0iiYMf95flr1M9nZ2WzZsoVp06ZZ0itHThpDTtgXGPU6fvnPM0x54DmC40QjYqPBwJp3XqG6uBB7N3emz38BV/8A5G01frknjrFtyfM4Rov6J2OLFqVtM6HjcoloCGHY5FfZt3wJR9at5uiGXylKT+Hqh57E2duHYcOGsX37drZv346vry/u7u6W9yol9QkMhmrs7aMJD5sPQEN1JZs//ZCcE8fQ9xpPbN/NaGzrOZlyN/36/kBjYxq+fqtxdtlP+8e+vDyEsl32KJprKIs6iMIcSJYhkBwg0MeOoIgUPGPyKCz4EuhH//49KSv/lIKCrzGbW7G1DSIu9na2b1tIQ0MDmZmZSJLEli1bsLGJJSj4OEqloW3eegyGKgyGKhoaOiziAXJy+nHLzf2wc3bBztmFoD5xltd2797Ntm3b2L3blvvvf6FTJEmn0/Hjjz9SUVGBg4MDs2fP7ramSiaT4+19LR4eE8jP/5K8/E+RJBM+PjcQGHAbWm3HQyx7e3tuueUWDh06RGxsbJexrFixYuVywiqu/kdRh4X9ZWO3i6vz1ap4e3uTnZ1NSVsqzuWM0Wi0pHadPHnyshNX54pcyWxscJk5k8qPP8YufigOky6umWh73VVKSgq5ubnnFFe5ublUVFSgUqno27dvt/uEhIQgl8uprq6mtHS3ZbteX0FTcyb2dl0bWP/dpKSkABcXtQKRQjl58mQyMjIoKCigtbXV8t7ExMQgSWYyTr1CWdmvREa+hEqlQq/Xk3b0MMnrfkHf2sKwmXMIietPUfEy6uqPoVDYkXSiJ6t/WYSHmxvmwmyaqivBLwwXd3dcpXDKsjNZ8fIzXP/My6g0Gla+uoDWVnCMBHufRuKnzcbWVrxvzl7eDCkoYt/hI1SZZfz43BMMmTmXzNIKkk6exGQydbmubdu28a9//avTtgM/LwcgetgIXH2FUAyJ68/1z77Cb++9TlNNNcgkPHpX4xZdS+VJF9Z99A47du6iwmBGkiTs7e1xc3FB31BHSW09SBL+CjM3zn8RG1stEydO5JNPPiE1NZXNmzej0+lwdHREqdyHXN2EjRpce5Twy1svc9VDTxAxKJ7Nn7xPYUoyNra2TJv/Au6BwZ3m7dcjhMgpVegNErU59uRt9cd/eBVu0RWYHXeQkfkUw296nYCY3mz8eCFl2ZkseephJt//GIMHD+bQoUPU1tayePFiRo4cSXx8PEXF31BdvRu5XENMzELkchtS9/zOtq8Wo2tqwuzigd5gT2HB9fTo+RsNDcns2z8Kg0H0hJLJoKrKn/y8PsQPvRGT0wrKqjLJTTwCgFrrQEtgBPkl/THKtISFH8Y/IIWAQAUKxVry8moBcHLqT3TUK6hUavr06UNCQgIrV660GKjY2vYjNPROKisqKCrKQqerRanUo9Y04eSkJzDQFpOxjNw8Ja4uA3Fz69rkGyA+Pp7k5GTKysrYtGkT06YJB8LW1laWLFlCYWEhGo2G2bNnn9NYBEChsCUk5H4CAoTNvVLZ/cM+BwcHxozpatVvxYoVK5cb/7i4+vjjj3n77bcpKSkhJiaGhQsXMnz48G73LSkp4bHHHuPIkSOcOnWKBx98kIULF3bZb9WqVSxYsICsrCzCwsJ49dVXmTr14uqGrPxxLkZcwV9ravFnUVhYaLHPzszMxGQyWUwf/mqMRiPl5eX4+PicNarTnbiSJLPFDtn97nnYBAdhP3r0H4oMBQUFcerUERoaXyUzK4HQkEe6WH0DHDhwAIDY2Niz2per1WoCAwMpKzuBTpeLTKbCwSGG+vpEaqr3/uPiqrm5mZwc4QzZo0ePc+5bVbWTtPTniY56GTe34cjlcgYPHszgwYMxmUyUlJSQl5eHvb093t6epKY+SUnpzwCkpDxGcND1nMpUsObzj7GpFU1gf379eUIG9MB1oGjArLaZQVZWNQAVVVVg6wS+jgC4e/swbd48fn7teUoy01nxyjPI5QpaGupx8QnGycGN+sYEiktWERbakXY1Ytx4Dh0/gQEoMdixctMWaPusqJFwd3Uhoncszi4urFmzhoyMDEpKSvDxEU1+K/JyyDy0H2QyBk/t3M/IL6oHdy36mtqaJDKzn6ehUdTK+F9RhipMy6lMPZIkfnYaGxtpbGy0HOshNzH3yedRqtXo9dV4eXnRv39/Dh8+bDFJiY3tSUHhC5ZjvGLrqEx2Ze17bxIc14+cY4eRKxRMefRpPM4QVpJk5mTK4+gNpWg0gXhoZyL1KmL0NXfRIttNRsaLlJX9isnURO++HzPnzQ9Y+/6blGSksfqtlxg8dSa33HIz69atJzs7mz171pKfvxwfX9F4OyLiGRRmL9a+9wYZCXsB8A6LwBDWi9yCAiIjhxMXO5Wjx2ZjMNQgk9ng430dlZV9STmZQlRUFEPj44nrFUPu8aOWVgAAVY1NYO9EUPCtyBX7ychYgCQlYTSCVhtGeNgTuLuPs/x89+vXj4SEBPR6PQqFgiFDhjB8+HDLz6UkSVRVVZGRkcGBAwfIya4nJxtAZBFMnXr2BtIKhYIpU6bwxRdfcOLECfr06YOfnx9LliyhqKgIjUbD3LlzL9gMBs4uqqxYsWLlv41/VFwtX76chx9+mI8//phhw4bx6aefMnnyZFJSUrp9Oq7T6fDw8OCZZ57hvffe63bM/fv3M3PmTF5++WWmTp3KL7/8wowZM9izZw+DB3e167by53Ox4qqsrKzbtKjLiezsbMv/dTod+fn5hISE/C3nXrduHceOHWPKlCn079+/231OF1d1dcfIyHiJpuZsBg5YhZ1dODIbG2HJ/wcJDg4mMOgEGk0meXmZNDam0Svm/U5OdKWlpZZeTkOGDDnneOHh4RiM6wBwcRmCi8tQ6usTqa7ZT0DALX94nn8G6enpmM1mvLy8LGlfuuYmbGy1nYSpJEmcynyD1tYCMrPewtX1ik6vKxQK/P398ff3x2hs5cDuuTQbD4AkR2H2x6TIx93jJ4pKJmHQ2NFzRB9sHZ1I3LwGyWULJnMjhkZXNu9oBoUNNpXFYDJj9vDF2PazYm9vj8bOnunPvMzPb7xAcbqIuHmFRjDtqRdoaNlN8skESkpWERryIDKZEDUajYa+ffty8OBBTPbOYr5N9dhUFqNsbqQeSD62n76TriY6MpLU9HR27drFzJlCSLVHraKGXIGbf2ebcLNZT27eYnLzFiNJBuRye6qrQ3FySsLLJwc7uzqytgRgrjZitrHFrNZg6xOAb2gY1836FyobNadOvUZ+wZdER73K6NFTSEpKQtfWi83PL5+i4grUah9sbNxpaEii5zVaTizXk3NM1CyNu/M+gnrHUV9/AoOhBkkyAxI1NQeoqtqBXG5Dn96LcIg/PTL5L7S2wRw/cQeVldtIz3iO6KhXmfn86/z+3ZckblpLwi/LqazaQewwewICD2M2l1mOlssHYKcYxdIFj1NTUoxcoWDI9BtxjOrNqp+FoI6JicHR0ZP+/ZZSU3MAL6+rUas9MZvNBATkExAQgEwmQ+vkTM8R54rSBKFWu1BQ8C3e3tfi4z29y8MOLy8vxo4dS319PfHx8V3SW2UyGe7u7ri7uzN48GCSkpLYu3cvFRUVaLXa8z5Y8Pf3Z/DgwSQkJLB27Vq0Wi3FxcXY2toyd+5cixC3YsWKlf81/lFx9e6773L77bdzR5vN98KFC9m0aROLFy/m9ddf77J/cHAw77//PgBffdXV6rZ9jPHjx/PUU08B8NRTT7Fz504WLlxoaTBp5c/BbNZjNus7LbBbW1upazPKOJ+4cnNzQ6lUotfrqampOWsKyuVAuy23RqOhtbWV9PT0v0VcVVZWkpiYCEjs27ePfv36dRt5am1tRaVqoaLyP2ScWmvZXlq6mrCwxy95Hvb2LXh7nwJAJlNRVfU7R47OIjb2czRqIZJ37/4dJ6cyQsMccHGxP/tgCHFVXlEAgKvraFyc+5IF1NQcwGw2dhsV+7Npbm6msLCQsLCwTlHI9pTAHj16UFWYz74VP5JxYA+BveO48v7HsHMWi9Samv00NYlU0cbGFGprD+Li0vUBjtms5/f11yCzz8JsgrxtPtTn2xJ2pRZ732Z69dpGnvYGJt37ECWlvyAPqsBgbEAyQ9qhSCSFDXKDjh5BgYT1HUDUsBFkZudw6tQpywMjtVbL9KdfZOsXHyMDxt5+Dza2WtR241EqndDpSqiu3oebW0dWQHx8PLm5uTg5OTFixAi8PTyoLMyjNOsUiZvWUV1UwIGflyOzd4SASFJTU9mxYilO9vaWqMyQaZ2jVpIkcSLpXqqqRF82V9cx7N8XQnm5Hg9Pf3pE78LesZrY61op2RdNQNhEeo0ej5tfh0Crqt5jMfHIOPUSAwf0Y+TIkWzevBl/f1+qqn8EICjwDuzsIjiWOBeFSwr9r7uLY7/tYsj0mfQaNY60tKcpLvmp2/c+KvJFHBy6pny6usYTE/MeSUn3UVy8HI3ah5CQBxh72914hweQmvY8DuGpVFa3HyHHZPShuMSZgvwwDq17G3lJMU4enlzz6NMU1tSxctUqJEmiV69eeLY1R3dw6Nnp/HK53GIcc6F4ekzE02PiOfc5WxbImSgUCuLi4ujTpw8FBQXY29t3MqA4G2PGjCE1NZXa2lpqa2vRarXMnTv3nI2PrVixYuX/O/+YuNLr9Rw5coT58+d32j5hwgT27dv3h8fdv38/jzzySKdtEydO7DZ9sB2dTmd5KgpQX1//h8//v8Tx43dSV5/I4EHrsbUVNRftUat2N8BzoVAo8PT0pLi4mJycnD8srk5s20R+UiLj77oftfbPt+htaWmxNK8cNWoUGzduJCMjg0nnqV2SJInWxgZsHRz/8Ll37dqFj08KQcGJZGTEk52dTdgZ9XJmsxln5ySCQ45SUyNqKxwcetHQkExV9e4/RVzl5n2EXC5RU+2Dh8edyOSLaGxM4fDh6QQH30dZ2W4cHH+nT6w4/5GjGfTpvRiNpvun1y4uChwdhUugrjUaB4cYlEonjMY6GhqScHLqvl7rz8JkMvHNN99QXl5O7969mTp1KnK5nNbWVouQrko8yDefvANtqVn5SYl8P/8hrnrwCQJ69rY4s8nlGszmVgoKvu4iriRJYv/Om9qElYzWnLF4e4fi669E3mRELv2GWl1CQNAvHEjYT3OzELBqtTdqaQZ1ClGTM+vmW4k4zTo/Jiamk607gI3Glivvf6zTNoVCjbf3NRQWfk9xyYpO4srZ2Zl777230/4+4VH4hEcRN/5KMg8dIGH1T5RlZ6Ksr8bo6MreffuxLRZR3IhB8V3qmcorNlgiQz2i32bnzkbKy9NwdHTk5rmPo1DUciLpbhobU/EbmUpc36dwcuoQVkZjA6mpT7bN3R6TqZGTKY8waNBKHB0d0WqTyMktQKVyxdd3JgqFLa4uw6iu2YtHbDEPTP8JhUpBSuq/KS39BZDjYN8DZHJkyEAmx9NzMr6+M8762fD0mEhk5PNkZLxAds5C1GpvNLb+1ChexyW8BkmCypMu1OfZ4+Y1lLE3P8T+5n3kGo/TbGeDNqI31z/wEEnpGWzfvh0QKXpXX331Wc95uSCXyy/KDVWtVnP11Vfz448/otVqufnmmy8qFdCKFStW/j/yj4mryrZGjWf+Ivby8rqkGpzS0tKLHvP111/nxRdf/MPn/F+kviGZ6po9AJSXryUoaB5w4SmB7URFRVFcXMymTZsICAi46D/MLY0N7PjmM4x6HS6+/gybcdNFHX8h5ObmIkkSbm5u9O3bly1btlBdXU1lZaUlbexMJLOZ3xa+wamEfcSOv5KRs29DdZYapLNRWVnJyZPHGDjoBEqlkaiovRw99ithYZ0fHiQlfUREpKh1srfvSXTUi2g0/uzZO5SGhpPo9VXY2PzxqGBjYwalpasByM3tS3W1jn/96yeSku+iuTmL9PQFAKhUYDZrsbFR0dCQxKHD19G798c4O3VNZayq2oFMBg0NbuTm1hEZqcDFZQgVFZuortnXrbhqqq1hz7LvKMs6hUGnw6DXYdTpsHd148oHHrc45Z2NqsJ8MhL2kn3kIFVyG6qVtm33LwmzyUS/8BCOHjooUlR1LeTuP4ytWyv+0f2JGTaN3T9+S1VhPiteeoahsybR7CAWzr1i3uNE0j1UVG6lpSXfYhwBkJn2Fa3SUcxGGeqm2Yy/64VOc2rV3cyOHROx1TbQ3NyAUulEcPA9+PnO5vvvlyFRQ48ePToJq4vFx+d6Cgu/p6JiCwZDLSqV83mPkcnlRAyOJ3zQUPKSEklLPMqB7AKMTq54uzujkcGIm24FxIMymUyGTKbn1KlXAQgKvJvsbFdSUw8jl8uZMWMG9vb2gD0D+q/gRNI9VFfvJvH4HfTvtxR7+ygAMjJeQqcrbXO8+5rDR66nsTGNnJz3iImZT8JBYXUeEHCLpZ9SWNjjVB/eS2npagID7yDv1KeUlf2KTKYgpud7eHldddH3LMB/DjpdGXl5i0lNexowA2BrG0hUxBukV2dyMGEFDYVJfHviXiQkNBp7dH6hNCvVfPn9Ekst2fDhwxkzZsxl4YL5VxAZGck999yDg4NDt66AVqxYsdItWTtg3wcw6mkIGPhPz+ZP5R8vcjnzD86fYcV8sWM+9dRT1NXVWb4KCgou6fz/CxQXd6TbVFRutfz/fOJK39JMS2OD5fsrrriCkJAQDAYDS5cupbm5+aLmkbxjC0a9iDoe2/Aruuamizr+QmiPZISFhaFWqy3pO+3ugd1x6LefOZUgIrDHt6zn+/kPUpyRdlHn3b17Nx6eWahUIhqkUJjQ2n5DZWWeZZ/y8i1UVH4AgMEwjkEDV+Pk1A+12hN7+2hAorp670Wd90yycxYCEs5Oo2lt9aK4uJiNGw4R7PkfHO3isVGFUFAQw/HEiURF/saggWuwt4tCr6/k6NHZFBev6DJmRcUWQDikZWZmAuDqEg/QZb6SJHFi2ya+fvRukndsoSI/l9qyEppqqtE1N1FVmM/Prz9PXXnXByiG1lb2rfiRrx+5m28eu5d9P/1AcX4+1XI1AKraCpAkTqaksPS7b0lve0+V9TWEDwsi6vo8nOI24R3twU2vvkvPEWOQJDN5uV8BEva2A/HwmICr63BAoqDwO8u5m5tKycl7G4CWgl5ccc2CLvPTqL1parqTmhpvTKYJREauwNlpBklJaeTl5aFUKpk48dypX+fDwT4Ge/seSJKe0rJfO+bXnEtm5lukZ7xAZtbb5OQuIr/ga+rqjlr2kclkBPfpy6S5txMVJQSQbY84pj/9EgaFkjVr1vDGG2/w9ttv8/vvT6DTlaLRBCCTTWbLFvEeT5o0qVNvIoXClj69P8bRsS9GYx3HEm+hpaWAiootbWYfcnr2fButNoiePd4EIL/gS06depWmpgwUCnv8/eZYxnN07IOHxyRA4siRmW3CSkmvmA/+kLBqJyz0Mby9p9IurHx9b2TQwLW4uQ8m/oabmPv2IgJ79cFo0GMyGIiOimTO3LnY2tpahNXEiRMZO3bs/1th1Y6Xl5dVWFmxYuXCqcyE5XMgazssvwkaK85/zH8R/1jkyt3dHYVC0SWiVF5efklpBd7e3hc9plqtRq1W/+Fz/tNIZjONNdXUVZRRX15GXXkZ9ZXl+ERE02fspS3MusNkaqG0dI3l+7q6Y+j0laht3M8prmrLSlm64HGMej2zXn4b94AgFAoFN9xwA59//jk1NTWsWLGC2bNnX5ATn9lsInGTMEVQKJXomps4tuE3hky/8TxHduX4lvWU5WQx4l+3orHvXC/UbmYRGioiI5GRkWRlZZGenk58fHyXsQpTktmzTCyy+06ewqmEfdSUFLPsuX8zeOoNDJk+C8VpjXibmrJRqz071a5VVVVx4sRx+vVPBcDd8V+UVm9AY1tD4vH7GTtmNfUNySQlP4RMJlFRHsnVV79jMSwAcHUdTmNjGskHPmNrwg6ufOAxXH0vrgFnff0JKio2ATKiop9ESR2rf1tL8smTpO/egbqsBp13JAYXTxSNdWx66yVC4gYQFDcfjesPVFZvJTVtPvX1x4WTmsIWk6mZ6hohoKoqA2huLqe+vh5X12EA1NUd5dixBHr2jKO5upItn31EQYpo9uoVGs6Q6bOwtXdApdEgk8tZ/+F/qMzPZdVrz3HjS2+jdXTCbDZzeP9ejv/yE/UFwvlPrlAS2DuOMq0TTTV1OGvUuNupKS7JpdknGKNzRxRy+t330aB7mbp6M0ZjAyeS5jFwwM9MuvcRfHuEUaYXqZbHV5ZSeehtel15HdXVuykuXkFoyEMolQ7s33YHCnsDrTVaRl73CfKzfKZ9vPuyZYtwCty39/tOrw0fPvy8VtbnQyaT4etzPRmnXqakeCUuzoPJzVtMWdk62oXDmURFvYy/X2fr9REjRpCenk5SUhKtra2dHi4oFBVIbEEG1NVNYv++X5Ekid69ezNwYNcnkgqFlrjYLzhydBZNTRkcS5yL0SgejAQF3mGJdrq7j8HPbzZFRUssaZj+fjehUnVOtQ0LfYSKis2YTI3IZCp69/oQD4/xf/COCWQyGT2iX8fRoRd2dhGWz2c7rr5+XP/sq5xK2EtjdRVxE69GrlBw++23s3PnTnr06HHZtWywYsWKlT9ES63419b50sfSN8FPc0Df9qC9sQx+mQc3rYTL2NjsYvjHrsLGxob+/ftbnm62s2XLlm4XrBfK0KFDu4y5efPmSxrzn6a5Ofecr5/YtonP7r2F5c8/yYZF77JvxQ8k79jCls8+pCL/3Mf+EcrL12MyNaLRBODg0AuQqKzchtlsPqu40rc0s/qtF/EedoKQK5NZ+9GL6FtElEqr1XLjjTeiUqnIyclh8+bNFzSPnGOHqa8oQ2Nnz9jbRe3IkfVraG6s4FjiLZxIuofGxrNHl9rJPXGMrV98TNK2TaI/0GnW0LW1tVRXV1t6PYEQVwD5+fmW5r0gIizZp75g16+PASZ6DB/N6Jvv4ua3FxE9bCSSZObAz8tZ98FbSGaxqC0rW8uBhPEcPDQFo1H8oqkrL2X5l5/j7FyEVluPSSdn+8LD1OWMx2RSIJOlkJIyn+PH7wB0VFf7EhDwVFvaVQeOdoMAMCoyKMvOYMXLz3Qb3TkXWdnvirFsR7H90xVs+89LqIuyQZIwuHpiCgjH0CZKbKpKqK8o5/iW9fz69lvs+E8ZumKR3ldUvJSDh66loeEkVdW7MZt12GoCcXERdUOZmZnY2gajVHogSQZ27vySrxd9yLdP3E9BShJKtZqRc27nX6+8Q/iAwfhF98QzOBSPwGCmP/UiDu4e1JQU88ubL2JobeXnH75n/ZZtFGldkPxCmHjPI9z7xQ9EXDWN8po6lEolc+68i9mvvssjH33G1VddaYkuuLq64uiR29ZjSota7U1zczbJJx8BzLhEVKOwMWNudaGh0I60vTv5+bmvMbc6YTI1svnHeaz5+E6wT0UyQ2jQszi5nb3Av3fv3gQGBuLk5IRGo7G4Znp7e/9pv7e8va9FJrOhofEkCQevpKzsN8CMm9sogoPvIyDgVnx9ZrRF4CA9fQEFBd90GsPX14c+farpP+BnZPIv0drVEBUVxa233sqwK/KRy81UVflxMKGVxsZGPDw8mDJlylmjNiqVM33jvkGjCaClJR+DoQo7uwhCQh7utF9E+Hy02nAA5HI1AYG3dRnLzi6ckOD7Uau96dN78SULq3bkchUBAbd0EVbtyGQyIodcQb8rr7WIZ3d3d6ZPn24VVlasWLn8MJsh+3dIXgVtbTLOSV0h/PYwvB0uvlbfB+UXl4XTCUmCtY9CeQrYecKc1aC0haxtsO/9Pz7uZcY/6hb46KOPMmfOHAYMGMDQoUP57LPPyM/P5+677wZEul5RURHffdeRaiOc00R/lIqKChITE7GxsbH8IXvooYcYMWIEb775Jtdeey1r1qxh69at7Nmz52+/vj+DwsIlZJx6mejoV/H1ub7bfZw8PJHJ5Ti6e+Dk6YWjhxdVhfmUnEpn308/cO3jz/ypcypqSwn09b0BgIaGZCoqtmCrGY/BYEChUHQyp5DMZtZ/9C44nMAxQDyddow+wubPPuSqB/+NTCbDy8uLadOmsXz5chISEvDx8SEuLq7b89fW1pKbm8ux9Wsx2WiIHjWOmFFjOfTrKmpKiji66210GtGctqJiK36+MwkJfRi1Tdf6KF1zE5s+afuBlskoyz7FylcXcP0zL6Oxt7ekBPr7+1v6w7i4uODh4UFFRQWZmZn07t0bSZJIz3iRoqLv8RoEbr009OglhILG3p6rHnyCsAGD2bjoXU4l7GPnD18zcNpIUtOEq2VLSz6pqQso3R/O8T2/0xgSQ68w4VonNfTCbDCQvz2JCt1gonvto7RMWDs3NrhSVnotU6/rvAhvqq1h8/s/4zVahsrOhGeUI+XpVfz00jPc+OKbOLh1Xyt2OjU1CVRX70YyyznwZT76BiHMQvx80faI4khqBi1tNt6BgYHMfvJJClKSyDl2mJzEw9RXlJP6mxF7vwCCx5bRTBYHD01DiTh3S7knsjphu3byxHEMBgNFRY54eVXg7FJKbpY3dmaJkD59GT73Gly9w7uN/ti7ujH96ZdY9ty/Kc3M4LNnHqPeXUNs3B7q6jzJzenLvowsHELC2bhxIyCiMO2fUZWNmgGDBmOjsWX9+vUMGdKXrCxhtBMUdDdursM5cvRGqqp2kJX9LuVl6wHoEfsofd4YzO4fvyHvxDGKDtoSMKIOHI/SHlhRtAymx7iZXeZ8Oo6Ojtx2W4dgkCQJo9GIUqn809LJVCoXPDzGUV6+HpDh6TmZ4KB7ujjmSZJEVtbb5OV/SsaplzGb9QQF3UVjYzppac/g5HwMAFvbRjw9c3Fza8BkrkCnS0QutyEu9nV0rdnU1dUxY8aM8zrOqdVe9I37hiNHZ2E01tOz539QKDpnESgUtvTq9T7JyQ/i4zO9259jgNDQhwgJefD/fQqeFStW/h+ga4DV94iI0OC7IerKvzZq01AGiUvgyLdQ21FagFdvCBsNISNA6wZqB/FlbIV9H8HRb8Gk79g/cYn4ipwMwx6CoKEXN48jX8OJZSBTwA1fQ/AVcOXb8Ov9sO1lCIyHwNOMoSQJ6ovBye/Srv9vRiad3qXwH+Djjz/mrbfeoqSkhF69evHee+8xYsQIAG655RZyc3P5/fffLft394czKCiI3Nxcy/crV67k2WeftTirvfrqq5YO8hdCfX09Tk5O1NXV4ej4x53e/gyysxeSk/shMpkN/fv9gJNT18aOZpMJoNPCs6qwgG8fvw9JMjP79YV4hYaf91wGXSsq9blNF5qaMjmQMBGQc8WwPRgMtSQcvBK53AZPjx9YseJXvL29LQIZYO/y7zm09kd63JiF0tZk2V6414s+g56m78QOF60dO3awc+dObG1tefDBB7s4DhqNRj7++GOqq6s7bddoNPQNCyZ55RIirytC61WPrW0gLS357XtgNk1m1KjXUalUluM2fryQkzu34hbkQs/rJE7tLKU0UYNXaATXP/Myv23YwMmTJxk5ciSjR4+2HLdlyxb27t1L7969mTZtGidPLKCsSlj9G1uUKG2NbfPyJyT4Pnx8piOTKUjd8zvrP/wPcqWZuNtqMcvKsLfv0RZhM5G7zZeSplhsfBX0H7AWkBM/dAfVefVs+/JjCpt0+A4uIyDgJK2tdiQmTmL6tNuIjo62zK2mtJhVrz1HXVkp4VNKsPetJcD3AXYvPkltaQkuPn7MfOENi6V4d5RkpnM86TZUTqVUnnSmeH8AMaPG0m/SFItD3K5duyxuaDfddBMRER3NfyVJorIgj+QdW0jZtR2DsYaAESU4h3REBU/9Gkh9jSfNIT3EL1CZDA/PbKKj99JY58yx41OI6xFEdGw2RcU/olBoCfC/hcDAO7ukhQEUZ6Sx/LXnqPcPJ7r3ftw9xHtfUx1MSspQzGbxLMnDw4N58+ahVHZ9tiRJEjk5H5CT+wEajR9DBm9GodBQUrqalJQOJz6l0okrhu21mCoUpCRRmnWSBu2rSDIRkVXKPYgfthWV6ty29H8Xen01paWrcXMbhZ3d2c0/xD14n5zcDwFwdxtDVfUuJMmIQmFHcNC9NDSmUF6+gdPTCkOCHyA09OE/NDeTqRmjsQm12uMPHW/FihUr/zXoGmDJ9VBwoGObexRc8TD0vgEUqrMeetEYWkSkKOknMIt1CWoncA6EsqQLGyN4OIx6Ssxr7/uQtg5okw7+g4TIuhBxWHgEvp4kxNr4l8RxIP7+/3yXmKOjP1zzPpQch4JDUHhQ3K+nCkH5z5bvXIw2+MfF1eXI5SSuJMlMUvJ9VFRsxsbGnYEDVp/V3vpM1n/0Dqm7dxDSdwDT5r/Q6bWGxjRkyCwuXUc3/MrO77/EJyKacbff08ViGaAyP5fs3P/QYNyAg+0QosLewdbBicOJV7aJmHvYvauR2NhYpk6dCkD6/j2sXfgGvkPK8IytRqsNx8/vRk6degWzCbJ+Defahz7AJ1zMw2QysXjxYiorKxk2bBjjx3dO79m7dy9btmxBIZMhtTQh02hpl2tOTk44FR8mcNIBZDKIH7qLVl0xaWkv0dwsokBy2fWMHi2K5DMPJ7Dm7ZeRKWDwPWZaDaIBbvGecMpPqvAMDafI0ZNWnZ5bb721k0VxXm4uX3/zDSqFnJ5ee3EMF6YMBbu8GTjmORxCisnL+xS9XhRpOjrGEh31Mg4OMRz4ZTmF5W/gElGPQuZCoNs7HNy+AI8+RZgMSo4cu5rAwCS8vbPw9JhM794fAUJEH1j7C5uPHsfZtYymRlc83YO54655yGQyDHodxzb8xsE1K9A1NeHk5c3weX0oLHsfF5ehhAe8y/IX5lNfUY6bfyDj7rwPv8geyE77hViWncm+FT9QkrebqOtzkMxgzruVwVPuxMmzc6qnJEkcOnQIvV7PsGHDzhoxMOr1nDq0n+Ttm5DsTuDaOwNMdtjUPIgMBb+nZ2FCBpKEfX0WfafsR5IgLXUEYeHHsLFp6DSeUulEcNA8/P3nWsQNCEv6Lz5ZTENLCnF9NwJyZDIlkqRHrwviyJHBGI1qbrvttm6blAO0thaz/8A4zGYdvXp9hJfnZMtrpzJfJz//CwCCAucRHv7vLsdnZr5JXv5nAMT2+QJ399Fd9vlvISd3EdltaaEA7u7jiIp8wfL7p7k5j/yCLygpWYmtbRADB6xGobg4R0wrVqxY+Z+itR5+uB4KEkDjBLH/gsQfQSf6g+LoDwNvh35zwe78GSYY9WBsEWN1x+53YVubG7b/QOh/K8RMBRstNFWKFMHMbVB8VIgYXaOohZLMIoo0+ikR1TqdylPC5e/4so6ollsExD8APa8B2zMe3NbkClF2bInYP/pqmLkETl8z6Brg05FQndX1GhQ2cNfv4BXT9bW/Eau4ukQuJ3EFYDQ2ceTIDTQ2pePg0Iv+/ZZ3WsTU1NRQUlKCjY2NxZzD3t4eXX0tXz9yN5LZzKyX38Y3sgcALS0FHEiYAMgYMngLiet2sW/FD0iADGHD3P+q6xh6/SyUNjZkHUrg6IZfKUo/QczsTJS2JrI3+lOf54BcoaDPDFtwPERNTRTJSYO49tpr6R0Tw5F1qzmwahkKbQM9ZuaCzExc7Ne4ug4nKeleKio3o6tTUfT7QK55+AW8QsIwmXSkpGzmt992YTI5cMett1KemoS9qxse4dF8tGgRer0eu4oi5JUlTH/mZbwiovnoo49oampicFwpNo5baCl3ZOK0A6hs1Pz22xpKy5YQGnoUSYLQkIV4u4/g28fvo7muln43OWK2T2i7egmZzIbcjRFUlqhpDo1BZjYx0MuV0Lh+NFRVUph2kqL0VKp8QvEPSSM4JBGApuz+RPa8n+h48YvIZGqlqOgHsnM+wGRqBOQoFRNoblZho/4NyQQ5G8JpKFFjlkxEzqjEzrmShgY3HBzqACMD+q/oEq384btvOZWdA5KEY1EWV91+N/qWZvat+IHG6ioAvEIjmPrkc6Cq4UDCeGQyG0aOOEJDZT3Ln/83jTUi8mfn4krEoKEExsRyctd2sg6LJ2mBY4pxjajDxXEc/QZ8+qd+ng2GOmQyhcXAY+/evSQlJTGkbyxayUSl+UVaWrMt+ysUXvTp/TZGUyPZ2e/R1CR6QWnUvvTr9yO2tqJP0p49e9i6dQuxsVtwdCrDx+d6fLyncSJpHkZjA0plEF6eLxEVdXYhmJz8EGXla3F2HkS/vj922k+STCSffJj6ukQGDFiJWt3VtEWnKyfx+G24uAwlMuLPTcf9Jygo/J6y0jUEBt151oa1JlMLIO+SzmfFihUrlx1mE+TuFulwdn+8RckforUelkwX0RiNE8xdA759obUODn8N+xdBU1sdlMIGYqbBoDvBr39nIQLQUgOHvoCET4VBxC1rxX6d9qmF92OhtRamfAD9b76weUqSEEHnixQ1lELCJ3Doqw5xiEyIoKB4IeYyt0HSCpDaHoMHD4cbf+heDJacgO+vA6VGHBswSETGfPr841ErsIqrS+ZyE1cgBNGhw1MxGGrw8ppCTM/3kMlkNDU1sWjRoi4W5jKZjJEjR9KamsjJ37cS2DuOG559BYCUlCfaLI+Bxj4c+s0BvasXMq09fjZyahITALB3c0cul1NfIX7YXcIbCRpbgLFVTe5v/WltbMao12Hn00zENXkYDDYkHpvDtSOHs/fHb6grF+YWMTPrUTkX4eY2mrhY8eTfYKgjIeEqdPoSanMcaKlU49nDBqVDJZIknoTo9Rqaah3RFZipz7On3i6OFlsHHDVqzMf24ubrzy3vLkYmk1kiWgMGbsTWtoKCXd405vnjFh5FhlGOJEnE9DyCq3sqRqOa+mPjyD+ajX9/Ne4DEgHo3WsRxSUrqaragVLhSs6xCeTWqlA01KItzOzynjgOVRHa5wQAQf6PEB55f5d9ysrK2L9/I0bTj7i4dB4jL6s/5QfVKBtqUccOppFa+vVfi1JpEOM7xjFwwKpux/zmm2/QtjSiTz3W6TUHdw+GzZhNj+GjkMsVSJLEvv0jaW0tskRSastK2b/iBzIPJ1hMRTo+N3KiR/VDHfkjYGLggNU4OvbuMoe/kvSMlygs/BaA4qIo5PLp3HTT7YAQOCWla0hLewNJqsJgcKem+i5kMjvS09NxcSkgptcO5HI1Q4dsRaPxpbExncTEW9Hpy9quUYFCYY9SaY9CoUWSjEhmE2bJgE5XAsgYNPDXLvVIVqxYsWLlv5jqbPjlHpGOp3aEEY/DoHmg+gsi7rl7OyI1Mrn4Kk2C8pOgcYa5q4WwOh1DK5z8GQ5+BsWn/W3Xugvh5NcffGKFODzyDeg70uzxjIF5OzunFG5/BXa9DR7RcM8+kJ/fhfkP0VovarOOfAtVp7rfJ2wsDH8Mgrs3B7LQViJwOWIVV5fI5SiuAGpqDnAs8WYkyUh42L8JCprHypUrSU5Oxs7OTkSrdDpaW1tpbW0FoFfPHuSvXopkMjLz+TdwCdJwIGEy7bUSklnG4cPX0NracZ0xYaHUHtxJfZs40jg4EjtuEuqwDdQ3HCQ46F7CwkT9Se6JY/z+3ad4j92JSq0nff8QWk6IJxj2Lq4MnDWAGtP7yGRKhgzeiFYbYjlPbe1hjhz9F9BRhwUgGdUg1yE7I323rCyEnOz+qDJyUbQ2Mea2uy31Wjqdjk8+eZ5evVeAJCf9p9601Opp9Q4UNuFN9diWZhM2rRhHpyqaa+0o3OZD9PUlmKUmAgNuJyLiaYzGRo4cnUljYxp6vSeHD41hYO8BqOsqKUxJxtHDE7/onriGKMgpewIwUlgQx9SpX3f5rLS0tPDhhx9ahK+bexmRkYdQKmuorgrh5MlhgAylQoHRZEImkzF5shsNje+J9y7mfby8ruZsmE0mdi75iqPr16BxcGTI1BnEjr8S5RkmAqlpz1BcvAx//7lERT5v2W40GMhPTiRj/14K05LxDotk6PRZVLd8T37Bl7g4D6Ffvx/Oev6/itbWYnLzPkFrO4KvvhJGNA8++CCurq6AqPXas2ctcX03oFY3U1vjTXLyGCRJRnz8VhTKMoIC7yI8/EnLmC0tRSQl30NDw8nznt/fbw5RUS/8JddmxYoVK1ba+CsW0uVp0FQhRIjGseM8h7+CzQvA0ER7lgoAzkEw/kVh0FCbJwRYdY6YV9y/zp5udzaMOtj+sjCDoJvltca5LWIVd+5xCo8IkXXyFzDput/HMwYG3wXbXoLmKhizQAhGECl/78cKATbje5Gu93fQUAb5+yBvPxQeErVdwx4Cv65+Af9tWMXVJXK5iisQ7oHpGc8jkynx9PyAlSv2I5PJuOOOO/Dz63BTOXToEOvXr0eSJFw0NhgSD+DhH4DH0AzULtlUVvojk0m4uRVRVRmKt/cC9Hq9xVUxPDyMCEc77BwdiYofjs6QT0LCJADih/5uScUCqCgvZ/PW2Xh7Z1F+0p2yBF8GTplG3JXjOHHyZpqbsyzipbvryc//EpU8iNLkFvIOVaOrtUGmkLDt64/csQEf30a02hRkMjAZVZQkuNJcGMLtCz/HxrajceX2HQ8iSetobAjl6qs2kJuWwg+rfsEsSXg2VmGHGb2bGv+4zdioWxBmmUacHPvSr99SDAYzmZmZZGQcwNb2PVQ2LVRX+zL8iu/x9g62nEevr+LgoWvR6Upoaork6JFB9O3bj2uvvbbTtW3YsIGEhATc3Ny46qqrCAgIQC43UV+fiI1NTw4fPsaBAwdoaWlBoVAwY8YMoqKiyMldhE5XRmTEc8jl5zf0rC4uxN7FtdO9OJ3y8k0kJd+LVhvC0CFbu92nHaOxgT17r8BkarwsaoaWLFlCZmYm8fHxTJgwgUOHDrFunehtdsUVQcjl/0GiFZVqFCplD5pbFqNUOhE/dAcqVec/ipIkYTa3YDQ2YDQ2YjQ1YjI1I5MpkcuUyGQK5HI1dnbhnfqFWbFixYqV06jKgvQNwsHNuw+4hFy8092Rb4TY6TEFJr1+8SLmdCRJ1A7tfR+yd7RtlImIjf8AqC8SzWoBgq6Aaz+C/P1ClDSUnH1crRuMfhr63QKKCzDXLk0WxgzlbQ/xYmeJ+yOZob3wosfV4BJ84ddmaIWyZCg6Ir6KE8HRF4beB+HjhAg88RP8fCco1HDPXnCPgE3PwP6PwCdO1CtdptGg/yas4uoSuZzFlSRJnEi6m8rKrTQ1eXL0yHji469gwoQJXfZNTU1l1apVGI1GFK3N2NlVEjtsJ5IER49cjdLQSuxQsdgeNGgdDvbRJCUlsWbNGoxGI56enkyfPh0vLy8Sj99OVdXveLiPp0+fTzqdZ+PGjZw69RM9Y3Yil9yI7bmM2tZ15Od/gcnUiErlytAh27p1eDuTvKRE0vftInzgUFxDI/jwww8xmUzY21cSEXkIe3vRbFVrG0lc3GcWkSdJEnv3jUSnKyI1dTjjxs4nOzubgwcPEhQUxK233goI04OlS1/G02sJcrkZmcwBve5JCgoaKSkpwdzWf8reoZLY2M3I5SY0mgBiYt7B2ak/ZrORxOO3UFOzH602BG/vD/n2m+XIZDLuvvtuS3+vsrIyPvnkEyRJYs6cOYSFhXV7vTqdjpMnT+Lt7Y2vr++FfAQuGqOxgV27+yNJJuKH7sTW9uyNhPPyPycz8w3s7CIYPGjDP25rnZ6eztKlS7G1tWXChAmsWSOaV48YMYIxY8ZQWbmD4yfuAszI5TaYzXrCw+cTFHjnPzpvK1asWPlHMZtE1OPgZ2JxHzkRoq4Czx6XttBOXgVrHmiLALVh4wDevSBivBAUjuf5W3boC1jX4b6KUyBMXSxsudupzoHjS6HspEh1U6jFv0o12NiD2l6k9iGDY99DqUjRRyYHB1+oL+x8ToUaxr0gbM/bhaC+SUSY9i4EQ7O4DtcQ8VWW0pHi5tFDHGvnDnUFovdTXaE43mwSLnwmnRCcJr1I47vmQ4i+8uLv7x9BkoRJRuZWCBoG0z6HD/qKOd20CiLG/T3z+H+OVVxdIpezuAJo1ZWyZ89YZLJWSoqHM2PGZ2ftJ5Ofn8/SpUtpaWkhJmY7rm5FNDX0ICLkVaJienEy9WHKy9fj7j6O2D7CuKCwsJBly5bR2NZMt08fJU7OX3eb2qfT6Xj33XcxGJq4YvjPSJIOpdIRo7EeAHv7nkRHvYyTU9wfutbTe5SNGTOa0LAisrL+g9FYh9rGi7i+32JvF0Ft3RGOHJkBkpq9e6fh5uZDdXU1JpOJm2++mZCQjjlXVFSwcuW/8fFNJie7P3V1HQ1eXV1diYqKIjo6GgeHclLTHqe1tRCQExJ8PyZTE/kFX6JQaBkw4Gfs7SJYvnw5qamphIeHM3v2bCRJ4ttvvyU3N5cePXowc+a5+xz9HRw+MoO6uiP4eE/H03MydnbhaDR+yE7LvTSb9ezbPxqdrpQe0W/i69t9X7W/E7PZzPvvv09dXZ1l28CBA7nyyo6mv+3RXBAmF0OGbLWaK1ixYuV/E5MBTiwXLnHdOa85B0GvaTByfve1RroG2PGaEC4xU8Gzrc2HUQ9bFggDAxBpdzK5ECGnp63J5BA6WqTURV8Fqs7tVDj4OaxvS12LnQV5+9r6Lskg/n7w7AnHfoC8i+xNqrQVDntD7xWRocZyKDwsUtNaa0VtlWd098fqm0DfLMRTu/A0GYTJxO+vCfOICyVykhBW9p4XN/9LpSYPPvZ/JK4AAEstSURBVB4iRKJrmHjvA+Ph1vXWqNWfhFVcXSKXu7jKy8tjw8aniIhIQCbTMHTIxk5pemdSWVnJjh1f4Or2OaBg6JBNFoHU1JTFgYRJgJkB/VdZRFB9fT0bN24kJSWZfv3WYWdfS1PTUAb0f6tThOXw4cOsXbsWV1dXRo5MprJqGwC2tsGEhT6Cp+eVnRbwF0trayufffYZarWa22+/HaVSiU5XxrHEm2lqOoVK5UJc7FcUl6yiqGgJ7u5TWPubBwaDMIUIDAzk1ltv7RKBSUhIYNOmTXh4eBAQEEBgYCABAQE4Ozt32tdobCA94wVKS1d3Or5Xrw/x8hRPpaqqqli0aBFms5k5c+bQ2trKihUrUCqV3Hfffbi4nL2f1N9Fbu7HZGW/02mbXK7BThuG1i4MO7twTMZG8vI/w8bGg2HxO5HLLw+Bsnv3brZtE5+r3r17M3XqVORnpKBkZv2HvLxP6d3rQzw9J/0T07RixYqVfw5JEpGqLc9DXVt/R1sXGHIf2HuIqEr276I5LAh77RuXighQOy21IgJSeKhjm2dPIbJObe7YfsWjMPoZkSpnMkJlhnDAO/ET5O3tOFZlB+FjRMQsYoKIem14QrwW/6DodaRvhI1PiehTJ2SiuW3ERCEOTHpRz2TUCTGkqxfH6puEs9yA2/8a97+WGtj5tmica+MATv5tX34ilVGmALlSfLmGiOv8p8TM/o9h01Md39+6Qbj2WflTsIqrS+RyFVeSJFFUVMQvv/xCVVUl8fH7UCizcXW5gri4b86awiVJEkeP3URtbQK+PjPo0eP1Tq+npPybktJVuLoMo2/f7zq9lpb2BUXFr2Mw2HD40HUYjWr69evH2LFj0Wq1LF68mPLyciZOnEiv3i5kZ72Du/sYfHyuRy7/cxrhtX9ET78+g6GGxMTbqG84gUJhh0wmx2hsIC72Gw4dauLAAWEpfq6UPEmSLjjtrbT0V9IznsNobOi2fqy9vsrLy4uWlhbq6+u7NB7+JzEamygs/I6GxhSam7Joas6xuDKeSVjo4wQH3/M3z/DsNDc388033+Dl5cV1112HQtF9PZTZrEcu7z6Ca8WKFSv/b6nMhPWPCfEEYO8leg71v7WzeNI3CZH120NCmAQMhn/9BLbO0FwN30+FkkRhuhAwWNQpmQ0dx2ucYOpnEHWOB1jV2aL/UeLSDpEHIqIltTUdH/YQjHuxswhJWw9rHwEbO4ibJaJaTmdPYbfSDWYTfDFO9KwKGwtzfv6nZ/T/Cqu4ukQuN3Gl1+tJTk7m0KFDlJSI4kt7e3tuu+0qjp+Yhtmsp2ePt/Dxmd7l2NbWYrKy36G0dDUymQ3xQ7eh0XTOh25pKWT/gXFIkgE/v5sIC30UlcoZo7GR/QfGotdX4uvzMCkpviQliY7eGo2GPn36cPDgQVQqFY8++ii2trZdzv9XYjQ2cuLEPGpqhZCysXFnWPxemppa+OKLL/Dx8WHmzJl/Wt2QTldGQ0MKbm4ju0Tjmpqa+OCDD9DpRHqEk5MT999/PyrVn9hp/U/EbDbS2lpAU1MWTU2ZNDVn0tSUiVJhR+/eiy+oPs6KFStWrFwkLTVwaiukrxe9f658R0SWzoXZDDU5UJ4qIjZKDai0IuUuZ5do6GrSi7qi4Y/BsAe7puOdTuFhWDJN9FfyiRU1OitvE8YJWndhE+7dW8w1dS2krBbC6Or3LtyMQZKEUEtbLwRdmVg7cMUjMPb57qM7l7EN938Ntfmi99WQe6zi9E/GKq4ukctJXO3Zs4c9e/ZYrNUVCgW9e/dm+PDhuLm5kZv7CVnZbyOXa3B3H4Ob60jc3IYjl2vIzVtMYeG3mM0iQhEW+hjBwfd2e57snA/JyVkIgFLpTFjoo7TqisnL+wRb2yCGDN6IXG5DXl4e69evp6yszHJs//79mTJlyl97I86CyaQj+eSDVFZuJShwHuHh//5H5gHtTWyFQciMGTPo2dPaJ8mKFStW/ueRJGHOkPijqDFqb6gK4BoKs38WKWWnU1cEe94TDnEVaaKW5lxETIDJb4rxLoTSJPjuOmiuxGJNbu8Fc389e23SpVCbL2y6/QdYBZSV/0qs4uoSuZzEVXu9iYuLCwMGDKBv375otR2W22azgWOJN1Nbm9DpOLlcg9ksBJmz82Aiwufj6NjnnOeqrtlPRsZLNDVldNrep/diPDw63AjNZjOHDx9m+/btGI1G7rrrLjw9/+bizdOQJBP1Dck42Pf4R9PCDAYDq1atwsHBoZPhghUrVqxY+R8m8UdYfVqqtUcP4d538mchOuw84aYVoveR2STc9La9DPqGjmOUGvCIAjsPYc9taAZDi4hQDX8Uoq++eNFSkQHfXQsNxeDoBzf/Bm7dp9FbsfK/jlVcXSKXk7hqamqiuLiYsLCwLkX87UiSifr6E1RV7aSqaif1DUmAhJ1dBOFhT+LmNuqCF/pms5Gi4qVkZ7+H0ViHs/Ng+vX9odvjdTodOp3uH79HVqxYsWLFyl+CJImGrLbOwgr8YqkvgY8HixS8gXeI/kTt0aWGUmEgUZok7MUnvCKMHYqOiNf9Bwn3O69e4hj5X9B/r7YAkn6C3jPA+ezGWFas/K9jFVeXyOUkrv4Ien0Vra1FODjE/OFmqHp9NZWVW/HwGI9K9c+73VmxYsWKFSt/KUa9iAg1lEL+PsjbL9L46gtF5MgnFvwGgF8/CBxy/poWSYJl/xL1Vb594fatXZvRttbD8ptE7VQ7akfRV6n/rRffnNeKFSt/CVZxdYn8t4srK1asWLFi5X+OqiwoT4Hg4SLSdD4aK4RzXu5uIarMxos7n3ukcGULGwPBw4TT3ekkrYRVt4NcBfN2gldM9+MYdbDmPkhaAT2vhUlvgqPPxc3FihUrfylWcXWJWMWVFStWrFi57LG6q3WQvlE43hmaRM+h4CtEf6Woyd2nuxUehp/mQn1R19dUWvDrD0HDRJ8gv/7QUCLS9YqOiH5PJcc7rMXbj+l/q7BAd/QRwm3RIGiphlFPw6gnz38NLTWiN5UVK1YuO6zi6hKxiisrVqxYsXJZ0256MPxR0ZD1f1lkJXwGG58UYsfWRYiU0wkYDH1mQM+poHWFI9/Ahn8L+3K3CLjuY5Hip9KKL4Xq/PezpUak8mVth8ztHT2dFDbQdw7UF0PGBlEvdecOUFp78Fmx8t+MVVxdIlZxZcWKFStWLlsqT8HiYWASffUYdBdMeuOvMTy4WIx6SF8nxIV3H+GAp3a49HHNZqg6JYwfHLzFtZpNsPlZOPCx2KfvHNGLqTYf0taJWqf8A0DbMkeuFKl5JcfF99FXw3WLQXOJf+clCbK2wc63oeBAx3aZAu7cLu6BFStW/quxiqtLxCqurFixYsXKZYnZDN9cCfn7hYNcdQ4gCaEw/YtzN48tOASZW2Hg7WD/J7fPaKyAI1/DoS+hsfS0F2SiNsmnD2icxfxs7MS/hlZorRVOeq11oHUT9UuhozpqphrLIfEHOPKtaKQLQiQ5+oLSFirTxbaxz8EVj3aNONWXQPIq4YjXLqpkcrH/sIf/3IifJEHeXtj1NmT/DmOehRFP/HnjW7Fi5R/DKq4uEau4smLFihUrlyWHvoB1j4HKDu47IGqAfr5LpLgFDIYbl4KdW+djJAn2L4Itz4kGtlp3uPYjUY90qZSlwP6PhBmDSTSsx95L1CmVnBBOexeLTAH+A4XYOrWpw2hCqRH/P914QqGGqYuh1/Tzj1uRDmlrIXCoqKX6K9E1gtr+rz2HFStW/jas4uoSsYorK1asXBAmoyhuDxh0eaRkWfnvw2SAw1+L6Ezv62HwPV3tutupK4JFg0Vz2clvweB5YnvuXlg2S0R/1I4w4FYYcq9In2uth1/vh5Q1Yl+tGzRXif/3vxUmvtrV5e58SBLk7oF9H8CpzR3b/fqL+fe8tqPGqKEMio9BRRrom9qa37Y1wFVqQOPU9uUIVdkiva4irfP5/AdC/1sgZqo4pqEU6gqEGYVPnLXxrRUrVv5yrOLqErGKKytWrFwQm5+FfR+KBeXkN/6cMVvrYdUdoNLAtM9Bqf5zxv2r0DVCY5mof5FMIqpg63L+HkDtGFpg43yoKxQW1O7hlzYXuUJEM9r7A5nNoG8EXT3oGsTc7L0uDwOIzK2w8emO1DYQ/ZCu+Qi8e3XeV5Jg6Y2QsVE0l71tY2dBX54GK28VVuQgjBX6zID8BFGrJFfBpNdFXdK2l+DAIrGfW7jo3dRcBc2V4l+ZAuzcRYTLzk3UORl1YGwVX1VZUHpCHC+TQ48pMPQBCBj459yX2gIhsupLxNhn3gsrVqxY+ZuxiqtLxCqurFj5L6e1TqRBhY6GoKF/zTnqi+H9OGEqIJPDvF3g3fv8x+19X6R2TXoDoq/q/JrZLJqOZmwQ3w++Gya/ef4xjToRHXDwAZegi76UbjGbRWQifb1IuYq7qXOaU1OVeP3gZyIScSY9psCop87e2wegqVIIhsJD4nuVHVz1DsTNurh5pq8XdS4liR3b5UohMAwtWAwN2rF1Ac+e4BEtoh62Lh0RFLWjiI4obYRIU6rF6xcrxiRJiLrmauEsp2sQ96k9epOypiPqo3WD2Flw9HvQ1Ym5X/GI2NZaJ44vOgI7XhXXNG83eEZ3fy9ObYI9CzsbKzj6wQ3fdhY/WTtg9T3CYvyPoNSIz8TQ+6yRIytWrPy/xyquLhGruLJi5W+kuRoqM0Tqz5+RWmdohR+uF41BlbZw+ybwib30cc9k3eNw6HNABkiijuPWDedehCevEr14QCygb/hGiJB2tr0Eu98RC+j2+pWZSzrv005dEWRugVNbRPG8vlGIvJipMPyxzqKm7CQcXyaiGr2mQ58bOyI73dFUKep4srZ1bFM7Qf+5YsF/8hc4sFicE9rsq23ENckVwoSgXdDETIWR87uKgcpT4n2qyRWixiMaChLEa31mCpF1Lpc5s0nMY9d/oCL17Pu1I1cJcdha17k/0YXgPxCmvH9uoQhQkydsvpNXiqiL2XCeOSmFgB7xhDBwqC+B9Y+LuqCzcaE9k/IPCBc9mQKufFtEos6kuRqOLRH3w85diDytm7i3zZXic9BcCfrmNsGpFv+q7SFiIth7nH8eVqxYsfL/AKu4ukSs4sqKlb8JfRN8NkqIK0d/6H8z9JsrakX+CGYTrLgZUn/r2OboD3ft+HPd0WoL4MN+QgBN/QzWPiyiEVM/g9iZ3R9TnAhfTQJjC7iECOczuRKu/xp6XgNJK2HV7WLfaZ+LtKt9HwrhMW93R0RK1yiMCQ5/RaeIzJn9faKuEpGKpFVQltR5Lr79ROQscHDXeebtEwKwoUQspAfeAekboDqr677evWH0MxA5qbOoLE+D31+HlNVtG9oc43zjRNqb1k30GWqpAecguGmliH7sfkccJ5nF9tCRIuri6CtS+eqLoDxVfJWdFA1aQUSbBt0pLMlVWlHHZNKJ90dlJ0SaUi3maGgVn7eKNCE2a/M73Orav4xtxxp1ItUROqJJI57onKppaBXi9vCXQuieGSVTqEVvJbWDmJuNnfjX0Vf0pzozDVKSRFRr8wKRomfrLN5bWxch8kY9Ze2ZZMWKFSt/M1ZxdYn814mrigxR4OzX/5+dR1OlWIRFXyUWE1b+OWryRNpa4JC/vrakvaZF3ygW/pJZLJQVqvMfu/o+SFzSeZtcKRbrzoEiCiJXiqhD5ETwH3D2sSQJ1j4i7KAVNjD9S9j2IlRlChe1m387e/2SoUWklR1bIkRAv7nQ4xpR99Qdvz0kIhQhI8S4u98RUSd7L7j/cNe+OY3lQkTWF0H4eLjxR1hzn7CHlinEgnn3O0J4DXsIxr8kBMLXk0XKnF9/uHUjFB0WqVw1uWJc/4EighAxXvQUKksW46SsodMiv/3+eURDwqfi9wVAr+sh+IoOUdFQCieWC0HhHikia14xbelmm4UrXO5ukVI36ilh/32uCFhpshBLZ4vE+A2AWcs6R0Dy9ouaswtxmbN1gSH3CWHVbt39Z3NmNMk9UhhBVKSKVMzy1M7udaGjhaGEX3+wdRWW45dDfZcVK1asWPnDWMXVJfJfI66qsmDHayLVCEmk0Qy845+ZS/ExWHaTWDw6BcLM7y+PxomVmaJ+JWOTWHxf/+Ufi4pUZYmFZWmyeOLv/weFbG2+cNkKHAquIX9sjPZxzCaxuFQ7igVubYGIFJz8RdRnQEdTzQsROheD2STOtWdhR2H76SjUogjdJ05EKnpcLeZ6OidWwM93iFS2m1aIFKVDX3auFTkduVI0/Owzo/vXd7wOO98AZEIUxFwnUs8+HyvqWPrOFkYBZy50M7cKa+t2wdKOxlmkpw28AzwiO7bX5MKH/cWC+rZNQsAadfDxUBHdGXq/cGBrx6iDb6eIlDe3CLhzm4hGmU1CKJ1Y3rFvxAQhNtrTI2vz4ZM28ePbV0S/kMApQFhph47q/l5UpIt6qPoSiL4SYqZ1PPBoLBdC8NgSukRZ2ukzE656t3sr6fYUsXOJqjNpLBdzLz4m6qLKU/+vvTsPb6u88wX+PdotWZL3fcvibM6eQBKyQllCoRCWQoFLS6flshSGwjDt0Okz3WZKS6ds5bK0vZcU2kLpFEIoaUooWSA4ISTO5iR24jXeLW+SbK3nvPeP15ajyI6dxE7s5Pt5Hj1JpKOjIzvn0fnq976/V4a6a58CTNbY7X2dch5V53HA0yC/KPA0yvCaNqP3Nl2GxcEC8Eg79K4cCtrdEvuYLVX+zBb+E+cfERFdgBiuztKYD1dddcDWp3rHyqvRjw0WsNTw4O19z9b+P8tWv2E/IvNPDBZ5UT/3zsGfJwRQtU0uhpk5V15snem6IL4OedHbWStv7VVyqM7JQ5nSioCvvx97oQ/Ii0Y1IIcR9Q27Of6ZbEBw5H1ELkSNVuC214HCK4d/fF31sqKw5zU5D0PRy4ux5f8y/O5ofT+vj38JVG3tv1/RyYv1E4eEKTq5PYT8Jv2212KrKWdCDckw8MkzsiJ0IkUvf3+a1l8Z6WNLA770bH8Dh7YK4JWVcruV3wUu/17/ts2lwJENcpidFpYhpPVI//yf1T8HFt/fv31PO7D158DOl+W/Tz4Hjn0I/OHLsqK2+EF5Ua7oZYA5+kHvlxMA7FnAlT+U/49KXpetnvve18J/ksdoTeqvtk36AnD32/2vc/RD4A+3yO2/vFZW8tqOyWF2tcVyztK9H0X/vjUVWPcgsP9NWRH55ofyd3miw38F/nRX/7/n3Q1c89Oz/3027JXDDkO+E9phO+WXIicP8yPJ1wFs+bn8vWbMkoE3a64Mu/x5ERFdsBiuztKYDVdqWFZPtjzZG2QghwRd8e/A/rfkY0D0xWVrmQwH+9+S3+SveXnkQpamymFX25/rPZar5Wtv+FfZLhiQx3HNT2OHY1V9LN9Hzfb++3RGOXxr0uWyC5Ujc+hjCAflMex4ceBJ6jojULBUXggXvyBbRucuBu5+p/8bczUkw8K2X/Q3EdAZZYgKdPXva8pqeSFatXXoKkqfzlrg0xfkULW+fSdP7g8mik5WFYpuknMwHNnyW3BdbzgK9cihdvW7gU+e7u+qpuhlgA11n/BiigyoRWvkkLb6PbI1c6hHhsq73upvj62GZEi3Jg/vIl3T5BC2j/4L6KqV91kSgMUPyIqQNVkej6LI426vlBWKhhIZlPpC7qwvA1f/F/DG7fKxvMvksLqh/k9qGvD3J/oD1IrvyGC66zfy9+bv/T2tegJY9W+xzy/+P8Dfvxd7PyB/B4vul+Gpr4GCpspw/tlv+jv3WRLkdtt+Ib/U+OY/YocpvnnXwEPgFB1w558HDuSaKofaZc4dfGjbJ8/Iysmq7wFTrh54GyIiIhoVDFdnaUyGq4a9wPqH+4dg5V0GXPkDOSQJkBe0H3y/P2Ct/G5vBeCkC725d8mhUScP6QkH5Gt4GmUA8TTJ1sEzbgQmLI89nq564N0H5QUoACx7DLji+7IaoGnAtqdkeALkELHkyUBKofx2vrZYXkwCcm5M4dVA0wGgs6Z//2Yn8MWnZHVnsG+E26vkxPuGPfLf8elynk5CnvwmOWseMOmK/vDQdBBY+0V5IV54DfCVP8jwue6BgYe29R3f7NvkGi5p02SYe/dB4MCf5ePXPAkseTD6OZ4moHQdUPp2f/czAMhfKif/FyyVYWnrL/ov3E+kM8jqWdATGxj1Zjkf6LKHZYODcEAOofK1yzVpTu7e1VAC/PF2+TuNT5fDqDqqZLASmgyRE1fJhgpTr5Nr2pys4iPZQKGptymCLQ247CFZzTlVN7c+Ib8crrf9OfmafZ3wLAnAA9uHvx6SELIz3Ob/lP+2JAD+Tvn3tBnAVT8ZvJoohGx/XrG5dy2m3jWZzA7ZpOBUQ1irtgEbn5DzmfoUXiPD6sk6a4HXbpT/T5In9d4my7lZw2nTTkRERGMOw9VZGlPhKtgjL0w/fUFeDFoS5EKQc+6IDR0nBywAgCKHYuVfJrtPCVUueLr6yf7nV3wkGwGcPOekz8xbgav/U1aShJDDwjZ8R1Z1DHFy7sesW2OfV7ZRTtrvccU+pjfJkLDsMcCZLe9rr5THsuf1/vVqpl0PXP9sbGgoXSfDZsAtfyZrXpJzS4ZSuwN4bY1sHJC9EGjcJ4fpxSUC1/5ChslQt/y5B72yinRycw5NAz74d1ktA2QQ7GtRrDfI0BeZy9JbTVrxODBhZezvrHG/bGntKpPzSrzNA1TgFNkmee5dclibPX3o93mizuNyWNzJ7apPbPcNyGpY5mw5Cd9sl0P8OmtluABkEFn+mKzeGONO7xgAoG63DLJ9C6Z+5Y+x6zwNx67fyrkvEEB8hgz1c+8cmTbug9FUYM/vgI/+U3Y4/MYHo9PenYiIiMYchquzNKbC1Rt3AmXvy78X3SwXFD1VS2khgI9+IjuCFa0BLnukfzL+3jeAdb1zVVY9IYfs/f17/RPq45JkZcmeLi9aAx45F0RogMkOrPxXOSytr8119gLgpldkRWowmiov0F1H5UV1a5kc+nTpfUBC7sDPUcPA9mfk3AYtJCsyc74i59Z4m2RlqOWQ3DZ3kewKN9i+BlL+AfDmHf0dvqZeJ+eHnU5oEQLY/izwj5/EznsDgJxLgZk3AzPWDG94Yx81LN9jyNcbcHrbN5/tfA5/F3DwbRmokibIVuD2DNmS+tB64PC7/ZWpk+mMshvb8scHrmydjpBfthC3Jg/esnw4KjbLoZVz75Strc+VvtA9km3diYhozAiHVPi9IcQnnqNmOTQuMFydpTEVro7vkvNmrn1qeJWZPkIMfEG+89fA3/5V/t1k7208oACL7pMVgJOHeTXslZ3U6j/vv09nlItYLn109JpkALKq8879QEvpwI8ve1QOszuTTniH3gWKXwQu+YacB3Sm4aWnXd7CfjlEL+wDEguGP9RtLGmvkkNJA57em1v+P5p169l1NiQiIhoHNE1g3dN70Fzpxk2Pz0fGROfQTxoBQhMo/aQBzZVdWHLzZFgdXMturGG4OktjKlwBcv7GSC4aue0XcngTAKTPBL70/Klbi2ua7J72jx/LKsyNL8rhY+dCOCCHgXXU9FfU7BmyWpaQd26OgYiIiC54+zfX4eM/lQMAJsxJwRcfGP1rnY6mbmx+/QgaK7oir3vt/bOgnMMOpGpIgxrWoKoatLCApgnEJ5ih6M78GNxtPlisRpjizu5LeKGJszqOkXI62WAUyw40YkYyWAFyeJc9S7Ydn3f30JUfnQ5Y8DXZFU7RnduWwwYzsORb5+71iIiI6KLj7Qhgx7v9y7dU7Xehs7kHCekDrMU3AlRVQ8kHtdj1fhW0sIDRrIca1lC1z4WKPa2YvGB0hp8LTaC9sRtNlV1oquhCY2UXulp8Mds5U+Mw+4pcTFuSAZPl9OJC9X4XNrx8AFa7Ebf+28IzGmIZDqr4/G/VaK314vqHZp/TsHm2WLkawJirXBERERHRqPnbKwdQWdKK9AkOmK0G1Ja2Y9bKbKy4Y+opn6epGrb8oQwdTT24/O5pSMoceh6wpmpY90wJGo/JalVeURJW3TUNh7c3YNf71YizG3HnDxbDEn8G0x4Gej1NoPFoJ47taUFlSSt63MFBt+2rEglNxgNTnAEzlmZi9hW5sCcNHZJcdR785Rd7EA7I+egpufG4+fEFMJqH33Sq5mAbtr1ZBrdLLjt0w7fnInda0hDPGl2sXBERERERDUPVvlZUlrRCp1Ow6q5p8HuDqC1tx+HiRlx6w0RYbAOHHCEEtr5RjsOfNgIA/vLzz3H1vTORX3Tq5k+lHzeg8VgXTBY9VtwxFVMuTYeiKFiwugAVJa1ob+jGJ/9zFFfeM+OM35O/O4SG8k7UHmpD5T4XfCcEKoNZj/QCBzInOZEx0YnUPDtMcXro9DrodApCARVHihuxf3MdOpt7sPfD4zi4tR5Lbp6MWSuzBx2m190VwPv/Zz/CARWZk53obO6B67gXm/5fKa69b1bU81pq3KjY0wqzzQBHchwcKRYYzXrsXF+Jij2tAID4RDOW3zYFOVMTz/jncD4wXBERERHRRSnoD2Pbm3Ke1dyrcpGSEw8hBFJy4+E67kXpx/VYsLpgwOfu/ls1Dn3SAEUBkrLi0Vbvxfsv7MPSWwsx+4qcAYey+btD2PleJQBgyU2TMHVRRuQxvVGHy++ehr88tRtlO5pQeEn6kEEtat/eEPZ9dBy1h9rRWuPGiWPTzFYDJsxNxeT5aciZlgi9QTfofoxmPWatysHMFdmoKW3Dnr/XoPFYFz7+Uzmq9rXiiq9Oj6lihYIqNry4H96OABLSrfjiA7PR0dSDdc/sQdU+F3a8W4klN02Cp92PHe9WoHxn86Cvr+gUzL4iB5deP+G0hySOBRwWOAAOCyQiIiIan/zdIbiOe+Cq86KzxYdwUEU4qEENqVDDGkwWAyx2E+LijWhv6Ebl3lY4Uiz4yn8sgtEkh6+V7WjEh2sPw+o04av/dVlMGDn8aSM+ek2uH7niK1MwY1kWtv6xLFLFmr40EyvvmBrzvE/eOop9Hx1HUpYNt//7JdDpY0POJ38+in3/OI74JDPu+I9FwwoYPe4g1j1Tgo7G7sh9iRlW5ExLQv6sZORMPXWgOhWhCRzYWo/it48hHNJgsuix6MaJcKZaodMr0OkV7N9ch8qSVlhsRtz6bwvgTJVz1cp2NuHDV+XyOZMXpKFqvwtqSK7nOXFeKvQGHdwuH9xtfvjcQWRMdGLFHVOQmmsf9HjOBw4LJCIiIqJRF/SHUf5ZMzpbetDdGYjckrLicc03i2AwjeIC7yfoaOpGyQe1OH64Hd6OwGk/f+WdUyPBCgAmL0xH8TsV6O4K4ujnzZi2uH/NytpDbdjy+yMAgPnX5GHWKrn8yuV3T0NSlg2f/uUYDm9vhLcjgNX/e2YkHHU29+DAljoAwLJbCwcMVgCw6IaJqNrXCrfLj03/7xCu/mZR1LGd7MRgZXOasOjGScidnjhia3UpOgWzL89B3owkfLj2EJqr3Pj4T0djttMZFFx7/6xIsAKAqYsy0Nncg883VOPY7hYAQFZhApbeOhlp+dEhRVU16Af5mYwnrFwNgJUrIiIiosGFQyoObq3H7o018HtDA25TeEk6rvqnGTHD40JBFZUlrUjNsw+7AURLjQdt9V7YkyxIyoqHLcEERVHgqvNi98beC/cTrmgdKRak5Mr9Gy16GIx6GIw66A0KAj4VPm8Qfk8IPm8IGRMdmHtl7PIuuzdWY8e6SiRnx+OW7yxAzcE2HPu8GdUH2qCGNfn+vj4jZg5S9QEX/v7bUoQDKtIKHLj+odmIizfh/Rf3o3q/CwWzknHdt+ac8j3Xl3dg/fN7oYUF0vLt+OKDs2FzmmO263EH8e6zJWhvkMFqzWPzR63DISB/F/v+UYeKkhaoYQ1CE9BUAZ1Bh0uvm4CJ81JjniM0gW1/KkdLjQcLVudjwpyUcdX9D+A6V2eN4YqIiIgudj5PEBUlrfC0+xEXb5Q3uwmedj8+31AdqRAlpFtRMCsZtgQzbAlmhIMaNv/+CIQmsHjNxKg5S91dAWx4cT9aajwAgNQ8O6Zcmo7CS9JhdZgQ8qvo7grA2xlAW50XdWUdaDjaiZBfjTo2s9UAe7IFruPeyH0T5qRg1uU5SMt3wHyW6ysBcnjh7773KcIBFXqjLjKcDQDyZybj2vtmQW8cuNLSVNWF91/YD393CAnpVsy7Og+bXz8CnU7BV/7jUiRmDB0qG491YsPLB+D3hhCfaMZ135qDlJz4yOPeDj/e+9W+cxasLmYMV2eJ4YqIiIjGK00T8Lb70dXigxACcXYTrA4TLPHGIefd+LtDqNzbimO7W1B3pCPSknsg8YlmXHL9BExbnBEzxO3g1jpsfaMcUIAv3j8LE+akoq3Bi/df2A9Pu1+u6xTSoPXuX1EAvUkfaeF9MrPNgLQ8O7wdAXS2+PqPS5FzeRasLogKHiPl4z+VY/9mOZTPnmxB4cI0TF6QjpTc+CGrLx1N3Vj/3N6oYYpzrsjFstsKh/36Xa09+OsL+9HZ3AOjRR8ZZtfe0B1pqc5gNfoYrs4SwxURERGNJ26XD8XrKuA67oXb5YOmDnx5Z0+yoGhFFoqWZ0e1GPe0+1GyqRaHPmmIqtCk5tmRPsGBQLccQufzhCCEwIylWShakQWDcfC5QFv/WIaD2+phNOtx2S2TUfxOBYK+MJypcbj+oTkw2ww49nkLyj9rQlOlO/I8s9UAq9MMZ4oFWVMSkTM1ESk58ZHhd+GQis7mHnQ2+5CSEz+qoSIUVFG+swkpOXakFdhPezibt8OP9c/tRUdTD8w2A/7Xj5cM2tp9MP7uEDb++gDqyzpjHkvJjcc135zJYDXKGK7OEsMVERERjRfejgDe+eXuyKKrAKA36OBIsUCn18HnCcLnDUVVoQxmPWZclolJ89NwZEcjynY0RQJZUpYNhQvTMXlhGhLSzvyiXVU1vPf83qhQkDnJiWsfmIW4eNNJ78GPcEiDzWk+rQVnxwN/dwglm2pRMCsFmZOcZ7QPNaxh/+a63mYhNnnLtI3LVuXjEcPVWWK4IiIiovGgxx3Euqf3oKOpB47UOKy8YwoS0q2IT7RAd0KjBaEJ+HtCqD3YhpJNx9FW743ZV/bUBCy4tgA5UxNHrOGA3xvCn3/+OdytPhQuTMMVX5t+ymoX0VjEcHWWGK6IiIhoLOnuCsDnCSEpyxYJTf7uENY9U4K2Oi/iE8246fH5cCTHDbkvIQTqDndg74e1qCvrQO70JCy4tuCMqypD6Vt3KntKYkxnPaLxgOtcEREREV0AVFVDyd9rsOv9amiqgNlqQFZhArKnJuLorma01XkR5zDhxm/PG1awAgBFUZA7Iwm5M5JG+egli82InGnn5rWIzjeGKyIiIqJhEJrAwW31UBRg2pLMM1ogVwiBqr0udLb0IKswAWkFjqjheydy1Xnwj98djrQb1xt1CPSEUbXPhap9LgCyi96Nj8xlQwOiMYLhioiIiGgIqqph82tHULazCQCwa0M15l+Tj6Llp+6Yd6Lmajc+eas8pjNezrQkZE9JgN6og6bKRVndLh8ObK6DpgmYbQasuH0KJi9IQ2utF3Vl7agv60CPO4grvjodydkj34KciM4M51wNgHOuiIiIqE84qOLvvzmI6gNtUHQKbE5TZO0iW4IZRcuzoNMrCAVUhAMawmENVocJ9iQz7EkWWOKN2PfhcRzZIYOZwaxH9pQENB7rQtAXPuVrT5ybihV3TIHNaR7190lEA+OcKyIiIqIREOgJ4f0X96PxWBf0Rh2uuXcm8mYk4fCnjdj9t2p4OwL47L2qYe9v6qIMLF4zCfGJZmiqhuZqD2oPtaG1xgMogE6nQKfXQW9UMHFOKibOSx2xzn1ENPpYuRoAK1dEREQXB00TcB33oL68Ew3lHWhv7IbRrIfJYoDRYkBXaw+6WnwwxRlw3YOzkVWYEHmuGtJwaHsDGo91Qm/Sw2jSw2jWQ2dQ0NMZgKcjAE+bH97OAFJz43HZLZORMWF0OvIR0ehh5YqIiIjoFHzeIIrfqUDFntYhh+bFOUy44Z/nICXHHnW/3qjDrFU5mLUqZzQPlYjGEYYrIiIiGne8HX601nrgdvnhbvPB7fLDYNRhzpW5p6wOCSFQ/lkzPnnrKPzdIQCAyaJHVmECsqYkIr3ADjUsEPSHEfSFoYYFJsxOgS2Bc56IaGgMV0RERDRuCE2gZFMtdq6vhKbGzmw4trsFBbNTsOiGCTGVJrfLh61/LEPtoXYAQHK2Dctvm4LMwoRB26ETEZ0OhisiIiIaF7wdAfzjd4dQd6QDAJCUZUNCuhWOlDg4ki1oqfWgrLgR1ftdqN7vQsHsFOj1Cjztfnja/fB5ZKVKb9Bh4XUFmHd1HvR63fl8S0R0gWG4IiIiojGvcm8rPnr9MALdYRhMOiy/fQqmX5YZ00lv/tV5+OyvVTj2eQuq97ti9pM9NRGr7pzKRXeJaFQwXBEREdGYJIRAXVkH9mysiVSrUvPsuPobRYOGo8QMG6755kwsWO1BZUkrzDYj7EkW2JMtcs0pm/FcvgUiusgwXBEREdE546rz4PP3q6Ez6JBe4EBavh0peXYYTXoAgKpqCPlVNJR3YvfGarTUeAAAik7B3CtzseiGidAbhh7Kl5Jjj5lzRUQ02hiuiIiI6Jw4tL0B294shxrSAABHdzUDkMHJHGdAMBCGFo5uUqE36jBjaRbmXpULR3LcOT9mIqLTwXBFRER0Dvm9IXS5fEjLt8fMFxrrVFVDS7UHJose9mQLTJboywihCfi8IQghYHWYIu8vFFSx7Y0yHCluAgDkFSUhc5ITzdUetFS70eMORtqi97HEG1G0PAuzL8+F1WE6N2+QiOgsMVwRERGdA2pYw4Etddj1fjWCvjCypyZi+W2FSM6OP7v9hjQc2FqHkk21EJqAPcmC+CQL7IkWmG2n/phXdAoyJzqRVZgAZYhW5G6XDx/831I0V7kj98XZjXCkxEFTBXq6AujxhCA0WXkymvVwpsUhIc2K9sZutDd0Q1GAS780EQtW50deTwiB7s4gAr4QTBYDjGY9jBY9u/gR0bikCCFiF4m4yLndbjidTnR1dcHhcJzvwyEionFMCIGag23Y/j/H0NncE/WYolMwc2U2Lr1+Aiw2I4QQCPlV9HiCUBTAaJZhw2DSxVS5hBCo2NOK4neOwe3yn9Ux2pwmTF6YjsJL0gesqB39vBlbfn8EQb8Kg1kPvV5BoCc88M76nnrS1UWcw4Srv1GEnKmJZ3WsRETn2ulkA4arATBcERFFE0IgHNSghrUx3W0tHFTR4w6ixxNEoDuMpCwb7EmWUXktIQR2vFuJsuJGTF+ahXlX5cEUF10paqrswmfvVeL4YdnpLs5uxOI1k5A9JQGfvl2BypJWAIDZaoDRoofPE4rMR4qiACaLAXF2I6wOE6x2E7ydgUgVyeo0YdENE5Gaa4e3ww9PewDedj+C/kECUK+gX0XNwTYEff3bxTlMSMuzI7X3VnPAhUPbGwEAmZOcuPKfZsCRHAd/dwieNj/cLh/0Bh2sThOsDjPiHEZAA7pcPnS19KCzxQc1pGL60izYnOYz/nkTEZ0v4ypcvfjii/jFL36BxsZGFBUV4dlnn8Xy5csH3X7r1q147LHHUFpaiqysLHznO9/B/fffH3l87dq1+PrXvx7zPJ/PB4tleB+wDFdEdLFTVQ0lf6/BkeIm+HtCCPrUyHCvvKJkfOFr00dlHowQAm6XH10tPQgFVYSDGsJBVYa6eCPsiXLImy3BjGBPGI2VXWg81ommii601XsR9Ksx+3SmxiF7WiJypiTClmhGOKgiHNAQCsr3ZDDp5VA0sx6WeCMSM6xDzoXSVA2bf38kMocIkHOEFl5bgJkrstF63INd71ehtrQdAKDTK5jzhVwsvLYgKoAdP9yOj986io7G7qj991WqQoHY9xO1nVGHuVfnyWBnObOR/mpIQ01pG45+3ozqfS6EBwl3C68twCXXFUDH4XpEdJEZN+HqT3/6E+6++268+OKLWLp0KV555RX89re/xaFDh5CXlxezfVVVFWbOnIl7770X9913H7Zv344HH3wQb7zxBm655RYAMlw98sgjKCsri3puRkbGsI+L4YqIxjufN4jOZh/sSRbYnKYh59OcqLO5B5tePYSWaveg28TZjfjCPTOQX5QcuU9VNdQf6YC/O4QJc1JhNOuHfC1Pux8N5R1ornLDVe9FW93AAelkik6JhL2T6Q06xDmMMJoN6Gzqxul+yk2Yk4IvfG06zNaBK3ThkIoPfluKqn0uKDoF867KQ+Xe1siQP7PVEBkyp+gUTFucgQXXFsCZOnCnO1XV0FzZBZ1BB6vdhDi7KfKzE5pAOKQhFFAR6Amhxx2EzyP/VMMaChemIz5x5KpBoaCKtjovWmo8aD3uQWuNBzq9gstumczhfER00Ro34WrRokWYP38+Xnrppch906dPx5o1a/Dkk0/GbP/d734X69evx+HDhyP33X///di3bx+Ki4sByHD17W9/G52dnWd8XAxXRHQ+9LiDqD7gQs3BNnjb/VDDApqqQVUFTBY9pl+WiWlLMk9ZodA0gQOb67BzfWWk6qE36OBIkRUfvV4BFAWKIi/87ckWpObEIyXXjoQMKw5vb8T2/zmKcFCDKc6AZV+ejPQCJ0xxBpji9PC0+7Hp/5airV5WWuZckYv8Wck4trsFlSWtkY5vcXYj5l6Vh1krc6JClrcjgPryDnkr6xhwrpDOoCAhzQpznAF6ow4Gkx56gwKfJwRvhx/e9gC03mCVmGFF5iQnMiYlIL3AAVuiGSaLPlJ5CvjCaDzaibqyDjQc7UTQH5ZzmIxyHpNOpyAUVBEKyCqZ2+WDpgo4UuOw+n/PRGpu9DpJQV8YG17ej/qyTugNOlxzbxEmzEmFpmo4UtyEz/5ahe7OgAxVSzKwYPXgoYqIiMaHcRGugsEgrFYr/vznP+Omm26K3P/II49g79692Lp1a8xzVqxYgXnz5uG5556L3PfOO+/gtttuQ09PD4xGI9auXYtvfvObyM7OhqqqmDt3Ln7yk59g3rx5gx5LIBBAIBCI/NvtdiM3N5fhiojOmN8bQuW+VlTsaYXb5YOiyKFhik6BTq+DxWqA2WaExWaEwahDw7FONFe7Y5oAnMwUZ0DR8izMWpUTM5eopcaNLX8oQ2utXHQ1zm5EoDscCSJD0emUyLbZUxPxha9NH3C+Ujik4tO3K3Bgc13MY3F2IwwmPTxt/si/i1Zko6criPqyDnS1+qK2V3QK0vLtyJzkREquHSk58UjIsJ6yU5ymyc50BqMcxjeSmqvd2PjrA/C2B6A36LDijinInZ6EuiMyEB4/1I4edxBGix7XPTAb2SdVc8JBFVX7XUgvcMCRwlBFRHQhOJ1wdd5asbtcLqiqivT09Kj709PT0dTUNOBzmpqaBtw+HA7D5XIhMzMT06ZNw9q1azFr1iy43W4899xzWLp0Kfbt24fCwsIB9/vkk0/iRz/60ci8MSKKCAdVdLX64EyLg8E49BCx80FVNbiOe9FU0QXXcQ90Rh0svaHHYjMiIS0OqXl2GEyxx+/vDqGjsRsBXxjhYP/QrdpD7ag/0jHsUHOitHw7CmanIDXXDr1BB51BhjHXcQ/2fXQcXS0+lHxQi72bamF1mBDnkMPI9AYdag64IIQMYEtumoSiZVkQQsDbEYDb5YO3o7fiI+TcJk0V6Gjugeu4B67jXoQCKvQGHRavmYg5V+QOOpTQYNRjxe1TkDc9CR+9fhiaJjBpXhomL0xDdmECAKBsZzM+/1s13K0+fP5+deS5igKk5tmRPSUR2VMTkTnJGdMEYig6nYL4xNFpUpFe4MDt37sUH649hJqDbdj8+pGYbawOE6771myk5cd+wBpMehQuTI+5n4iILg7nfZ2rgVrLnmoi8UDbn3j/4sWLsXjx4sjjS5cuxfz58/GrX/0Kzz///ID7fOKJJ/DYY49F/t1XuSKi4ROaQJfLh9ZaD5or3WislGFFUwVsThMWfrEA05dmQW849WR4nyeI7q4gkjKtZzVxXmgCnS09aKl2o7lGLlQa6AnDYNLJ5gUmPUJBFa01noEn8J9Ap1OQnBOPjAkOxDlMcNV50VrriVRnBpOcE4/J89OQOckJQFZchCaghjUEesLwd4fg7w4h2BNGck48CmalwJYw8PyZzElOzFyRjeqDbdj3j1rUl3Wiu0v+rE5UeEk6lt46OdKVTYECR0rckFWUvt+fxWocdjWoYHYKvvazpVAUBbqTgtj0yzIxdVE6yj9rRkVJKxLS4pA9JRGZhQkwn2aYOtcs8UZc9+Bs7PmgBjvfrQQUWV3LnpqInN5AOFDYJiIiOm+fcCkpKdDr9TFVqpaWlpjqVJ+MjIwBtzcYDEhOTh7wOTqdDpdccgmOHj066LGYzWaYzWwPSxcvTRNoquhER1MPdHod9L3VEp1egab2zvsJn/ynBk0V8HYG0FbnRVtDN8IDdDbTGRR0dwWx9Y1y7PmgFpdcNwEFs5Lh7QjA0+aHp92PrlYf2hu9aG/ohs8j5+wkZlix7MuFyCuKPbfbG7vRVicrLfIWRsCnoqcrgO7OALq7gvB2+BEOnjo09THbDMic6ERagaxE+L0h+Lwh+L1BuOq74XMH0VrriQy3O5E9yQJLvDEqtKXk2TF5fhoS0q2n82sYkqJTMGF2CibMTkF373v1eULweYLweUNIL7Ajq/DMmg4oOjnP6XSdavieTq/DtCVynth4o+gULFhdgFkrcwDgtKtrRER0cTpvnxYmkwkLFizApk2bouZcbdq0CTfeeOOAz1myZAnee++9qPs++OADLFy4EEbjwN+0CiGwd+9ezJo1a+QOnsaV+vIOfPZeFdwuH9InOJEzTX777EyLG7Ld8olkW2gVcfEj3366j6vOg9KPGxDyqyi8NB1505OihmapYQ1V+1yo3NsKi82I9AkOpBc44EyLgxYWaKjoRG1pO2pL2+D3hlC0PAtzr4xdeweQraQbjnWhYncLKva2wucOxmxzuvRGHZKzbEif4ETGRAcyJjphc5pxaHsDPt9QDU+bHx+9dnhY++lo6sF7v9qH/JnJWHrrZJgsBpTvakb5Z01wHfcO63gMRh1S8+xIK3AgrcCO+AQzQkEN4d5QpihAar4DienWQYfACSHgafejucqN5ko3/D0hpOTEIzXXjpTc+EE7yo02m9PMNYPOAYYqIiI6HWOiFfvLL7+MJUuW4Ne//jV+85vfoLS0FPn5+XjiiSdQX1+P1157DUB/K/b77rsP9957L4qLi3H//fdHtWL/0Y9+hMWLF6OwsBButxvPP/88Xn/9dWzfvh2XXnrpsI6L3QIvDK21Hux4tyKyzszJrE4TUnLsSM6yISnLhsRMG9SQKhff7PDD2xGQ1ZV2P7wdfgS6ZWvlxAwr8mYmI78oGZmTnejuDKDxWBcaK7rQXNUFnV6HtHx5QZ9e4EBipi1myNSJ1LCGypJWHNhSh8aKrqjH7MkWzFiahZxpiajY04IjO5rg94Zi9mG2GaCGtAErNRabEQuuzcfMldkIBzUcP9SO6oMu1Ja2R+3LbDUgY5ITEPKY+ipTOr0i5/6cUNHSGxToDDro9QosNiOSc+KRkhMPZ2rcoEP5QkEVB7bUoeTvtfB3h2B1mBCfZIE9yQJHsgVJfb+HDBs0VcOuDdU48FEdNE3ItttCRJo96HQK0ic6YLYae6tFOhgtBlidJsQnmGFLkMHDkWLhmjxERER0VsZFt8A+L774Ip566ik0NjZi5syZeOaZZ7BixQoAwD333IPq6mps2bIlsv3WrVvx6KOPRhYR/u53vxu1iPCjjz6Kt99+G01NTXA6nZg3bx5++MMfYsmSJcM+prEeroQmIq2DQ375p9lqGNXOVJoqKyZt9d7eeR5ySJKiKMiY6ERWYQKyChNgdZighjV0tfjQ3tiNzuYeGEw6OFPjIvM+hrP2zZkIBVW4aj1ornajvrwT1ftdAOSF+IxlWZg4LxVNlV2oL+tAU6Ubanh4Q8ZORVEw5Bo6ZqsBkxemY9qSDKQXOKAoMii46rwo29GE8s+aIkPhdDoFE+elIs5hQvnOpshaOSeyOU2YujgDakiguboLrbXeyHuxOkzIK0qSQ+kE8Nlfq/rX3rEZohaC7btv4txUTJ6fhuypiUPOhxoJmiaHFQ6nwUVncw+2/+VY5HeZOdmJKZdmYPL8tBHvEkdEREQ0kHEVrsaisRSujhQ3oqKkFX6vnPju94YQ6AkNeEGfnBOPwoVpmLwgDc7U05s74e8OwdPmR2KmNeqiV1M1HN3VjF0bqtHV4jvFHiRbghk+d/CUXdLMVgNMFrlmjinOALPViKRMK5IybUjKikdihnXYk8U1TaBsRyP2b65DW313zKKihZekY9ENE2J+HuGgipZaD9obuntvXnQ09cBg1sOeZEZ8ogXxiWbYkyyRv8cnWQAhcPxwB2pK21Bb2oaeriB0BgVpeQ5kTnYiY6ITQhNornajpdqNlhpPZK0hoLfqVZSMuiPtkXWCAFlFK1qejaJlWZGGBuGgioo9LSj9uAEtNR7kzkjCjGVZyC9KiqrGqGENbfVe6A06JGXZooY6aqqGIzuasOuvVfB2yOUGkrJsyJ+ZjIJZyUif6DzlnJmxoqOpG3qjDo5ktrYmIiKic4vh6iyNpXBVvK4CezbWDPiYokAOiTLr4fOEogJNap4dkxfIoDVYRavHHUTVvlZUlLRG2kbr9ApS8+zImOiEPcmCg9vqI5UPi82IiXNTYEu0wOY0wZZgRjiooeFYJxrKO9HW4I0M2zJa9EjKtCEx3YpQ78KcbpdvwErMQO8rzm6C1WmC1WGG1WlCYroV2VMTkZpnh653iFhtaTs+ffsY2huiQ0p6gQNpBQ5MmJ2C5Oz44f6oT5sQAp42P6xO06BVGE0TqC/vwJHiRlTuaY3qSqczyOYEUxdnIq8oaVRDTjikorGiC85hdI0jIiIion4MV2dpLIWr5io3XHUeWOJ7193p/dMcZ4DeqItUKfzeECr3tuLY7mbUlXVGVXDSChyYPD8NOoMiu7O1+dHl8qG93htVATPFGRD0xYYfi82IuVflYtaqHJgsg0/u7lvzJz5JVnoGahYR6Amhxx1E0Kci6A8j6Aujxx1Ee6OsILXVe08ZwExxBmRPSUDQF0Z9eScAWQmbvzofUy7JQHzi2J3gH/SFcWx3CxqOdSJjohOTF6TBYuPQNiIiIqKxjOHqLI2lcHUmfJ4gKkpk0Goo7zzlnKC0fDsmzkvFpHlpcKbFwdPmR2NFF5oqu9DR1IPc6YlDhqqRJIRAjzuInt55XfLvAbTUeFBf3hkV/nQGBbMvz8WC1fkMKUREREQ0KhiuztJ4D1cn6u4KoLKkFTUH22Aw6WBPjoMj2QJ7sgXJ2fGwJ1nO9yEOm6ZqaD3uRd2RdoT8KmYsz+IcHCIiIiIaVQxXZ+lCCldERERERHTmTicbjP02YUREREREROMAwxUREREREdEIYLgiIiIiIiIaAQxXREREREREI4DhioiIiIiIaAQwXBEREREREY0AhisiIiIiIqIRwHBFREREREQ0AhiuiIiIiIiIRgDDFRERERER0QhguCIiIiIiIhoBDFdEREREREQjgOGKiIiIiIhoBDBcERERERERjQCGKyIiIiIiohHAcEVERERERDQCGK6IiIiIiIhGAMMVERERERHRCDCc7wMYi4QQAAC3232ej4SIiIiIiM6nvkzQlxFOheFqAB6PBwCQm5t7no+EiIiIiIjGAo/HA6fTecptFDGcCHaR0TQNDQ0NsNvtUBTlnL++2+1Gbm4ujh8/DofDcc5fn+hCxPOKaHTw3CIaHTy3xg4hBDweD7KysqDTnXpWFStXA9DpdMjJyTnfhwGHw8GTiWiE8bwiGh08t4hGB8+tsWGoilUfNrQgIiIiIiIaAQxXREREREREI4Dhagwym834wQ9+ALPZfL4PheiCwfOKaHTw3CIaHTy3xic2tCAiIiIiIhoBrFwRERERERGNAIYrIiIiIiKiEcBwRURERERENAIYroiIiIiIiEYAw9Uo2LZtG770pS8hKysLiqJg3bp1UY97vV489NBDyMnJQVxcHKZPn46XXnopaptVq1ZBUZSo21e+8pWobTo6OnD33XfD6XTC6XTi7rvvRmdn5yi/O6LzZ6hzq7m5Gffccw+ysrJgtVqxevVqHD16NGqbQCCAhx9+GCkpKbDZbLjhhhtQV1cXtQ3PLbrYjMS5xc8tomhPPvkkLrnkEtjtdqSlpWHNmjUoKyuL2kYIgR/+8IfIyspCXFwcVq1ahdLS0qht+Lk1vjBcjYLu7m7MmTMHL7zwwoCPP/roo9i4cSN+//vf4/Dhw3j00Ufx8MMP4913343a7t5770VjY2Pk9sorr0Q9fuedd2Lv3r3YuHEjNm7ciL179+Luu+8etfdFdL6d6twSQmDNmjWorKzEu+++i5KSEuTn5+PKK69Ed3d3ZLtvf/vbeOedd/Dmm2/ik08+gdfrxfXXXw9VVSPb8Nyii81InFsAP7eITrR161Z861vfwo4dO7Bp0yaEw2FcffXVUefNU089haeffhovvPACdu3ahYyMDFx11VXweDyRbfi5Nc4IGlUAxDvvvBN1X1FRkfjxj38cdd/8+fPF97///ci/V65cKR555JFB93vo0CEBQOzYsSNyX3FxsQAgjhw5MiLHTjSWnXxulZWVCQDi4MGDkfvC4bBISkoSv/nNb4QQQnR2dgqj0SjefPPNyDb19fVCp9OJjRs3CiF4bhGdybklBD+3iIbS0tIiAIitW7cKIYTQNE1kZGSIn/3sZ5Ft/H6/cDqd4uWXXxZC8HNrPGLl6jxYtmwZ1q9fj/r6egghsHnzZpSXl+Oaa66J2u4Pf/gDUlJSUFRUhMcffzzqW4zi4mI4nU4sWrQoct/ixYvhdDrx6aefnrP3QjRWBAIBAIDFYoncp9frYTKZ8MknnwAAdu/ejVAohKuvvjqyTVZWFmbOnBk5b3huEUUbzrnVh59bRIPr6uoCACQlJQEAqqqq0NTUFPWZZDabsXLlysg5wc+t8cdwvg/gYvT888/j3nvvRU5ODgwGA3Q6HX77299i2bJlkW3uuusuTJgwARkZGTh48CCeeOIJ7Nu3D5s2bQIANDU1IS0tLWbfaWlpaGpqOmfvhWismDZtGvLz8/HEE0/glVdegc1mw9NPP42mpiY0NjYCkOeNyWRCYmJi1HPT09Mj5w3PLaJowzm3AH5uEZ2KEAKPPfYYli1bhpkzZwJA5P99enp61Lbp6emoqamJbMPPrfGF4eo8eP7557Fjxw6sX78e+fn52LZtGx588EFkZmbiyiuvBCDHrfeZOXMmCgsLsXDhQuzZswfz588HACiKErNvIcSA9xNd6IxGI/7yl7/gG9/4BpKSkqDX63HllVfi2muvHfK5J583PLeI+g333OLnFtHgHnroIezfvz+m2gvEnhfDOSf4uTV2cVjgOebz+fC9730PTz/9NL70pS9h9uzZeOihh3D77bfjv//7vwd93vz582E0GiPdmTIyMtDc3ByzXWtra8w3IEQXiwULFmDv3r3o7OxEY2MjNm7ciLa2NkyYMAGAPG+CwSA6OjqintfS0hI5b3huEcUa6twaCD+3iKSHH34Y69evx+bNm5GTkxO5PyMjAwBiqksnfybxc2t8Ybg6x0KhEEKhEHS66B+9Xq+HpmmDPq+0tBShUAiZmZkAgCVLlqCrqwufffZZZJudO3eiq6sLl1122egcPNE44XQ6kZqaiqNHj+Lzzz/HjTfeCEBeIBqNxsgwJQBobGzEwYMHI+cNzy2iwQ12bg2En1t0sRNC4KGHHsLbb7+Njz76KObLiL5htCd+JgWDQWzdujVyTvBzaxw6X500LmQej0eUlJSIkpISAUA8/fTToqSkRNTU1AghZEeloqIisXnzZlFZWSleffVVYbFYxIsvviiEEOLYsWPiRz/6kdi1a5eoqqoS77//vpg2bZqYN2+eCIfDkddZvXq1mD17tiguLhbFxcVi1qxZ4vrrrz8v75noXBjq3HrrrbfE5s2bRUVFhVi3bp3Iz88XN998c9Q+7r//fpGTkyM+/PBDsWfPHnHFFVeIOXPm8Nyii9rZnlv83CKK9cADDwin0ym2bNkiGhsbI7eenp7INj/72c+E0+kUb7/9tjhw4IC44447RGZmpnC73ZFt+Lk1vjBcjYLNmzcLADG3r33ta0IIIRobG8U999wjsrKyhMViEVOnThW//OUvhaZpQgghamtrxYoVK0RSUpIwmUxi0qRJ4p//+Z9FW1tb1Ou0tbWJu+66S9jtdmG328Vdd90lOjo6zvG7JTp3hjq3nnvuOZGTkyOMRqPIy8sT3//+90UgEIjah8/nEw899JBISkoScXFx4vrrrxe1tbVR2/DcoovN2Z5b/NwiijXQOQVAvPrqq5FtNE0TP/jBD0RGRoYwm81ixYoV4sCBA1H74efW+KIIIcS5q5MRERERERFdmDjnioiIiIiIaAQwXBEREREREY0AhisiIiIiIqIRwHBFREREREQ0AhiuiIiIiIiIRgDDFRERERER0QhguCIiIiIiIhoBDFdEREREREQjgOGKiIguOlu2bIGiKOjs7Dzfh0JERBcQRQghzvdBEBERjaZVq1Zh7ty5ePbZZwEAwWAQ7e3tSE9Ph6Io5/fgiIjogmE43wdARER0rplMJmRkZJzvwyAiogsMhwUSEdEF7Z577sHWrVvx3HPPQVEUKIqCtWvXRg0LXLt2LRISEvDXv/4VU6dOhdVqxa233oru7m787ne/Q0FBARITE/Hwww9DVdXIvoPBIL7zne8gOzsbNpsNixYtwpYtW87PGyUiovOOlSsiIrqgPffccygvL8fMmTPx4x//GABQWloas11PTw+ef/55vPnmm/B4PLj55ptx8803IyEhARs2bEBlZSVuueUWLFu2DLfffjsA4Otf/zqqq6vx5ptvIisrC++88w5Wr16NAwcOoLCw8Jy+TyIiOv8YroiI6ILmdDphMplgtVojQwGPHDkSs10oFMJLL72ESZMmAQBuvfVWvP7662hubkZ8fDxmzJiByy+/HJs3b8btt9+OiooKvPHGG6irq0NWVhYA4PHHH8fGjRvx6quv4qc//em5e5NERDQmMFwREREBsFqtkWAFAOnp6SgoKEB8fHzUfS0tLQCAPXv2QAiBKVOmRO0nEAggOTn53Bw0ERGNKQxXREREAIxGY9S/FUUZ8D5N0wAAmqZBr9dj9+7d0Ov1UdudGMiIiOjiwXBFREQXPJPJFNWIYiTMmzcPqqqipaUFy5cvH9F9ExHR+MRugUREdMErKCjAzp07UV1dDZfLFak+nY0pU6bgrrvuwle/+lW8/fbbqKqqwq5du/Dzn/8cGzZsGIGjJiKi8YbhioiILniPP/449Ho9ZsyYgdTUVNTW1o7Ifl999VV89atfxb/8y79g6tSpuOGGG7Bz507k5uaOyP6JiGh8UYQQ4nwfBBERERER0XjHyhUREREREdEIYLgiIiIiIiIaAQxXREREREREI4DhioiIiIiIaAQwXBEREREREY0AhisiIiIiIqIRwHBFREREREQ0AhiuiIiIiIiIRgDDFRERERER0QhguCIiIiIiIhoBDFdEREREREQj4P8Dp4czdmN7qjcAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig,ax = plt.subplots(figsize=(10,6))\n", "for datakey, data in dataset_dict.items(): # Looping over ever varable in the dictionary\n", " source_id = data.attrs['intake_esm_attrs:source_id']\n", " member_id = data.attrs['intake_esm_attrs:member_id']\n", " data['od550aer'].isel(member_id=0).plot(label=f'{source_id} {member_id}', ax=ax)\n", "\n", "ax.legend()\n", " " ] }, { "cell_type": "markdown", "id": "2ecfe25e", "metadata": {}, "source": [ "### Exporting a subset of the catalog" ] }, { "cell_type": "markdown", "id": "18e01884", "metadata": {}, "source": [ "Most likely you will only be analyzing a small subset of experiments the model experiment and it could be beneficial to work with a reduced catalog. \n", "Below we will make a subset that only contain the information related to `histSST` and `histSST-piaer`, and only the absorption optical depth (`od550abs`) and total optical depth (`od550aer`). " ] }, { "cell_type": "code", "execution_count": 10, "id": "d4d015f4", "metadata": { "ExecuteTime": { "end_time": "2024-05-03T12:54:53.492592Z", "start_time": "2024-05-03T12:54:52.229732Z" } }, "outputs": [], "source": [ "col = intake.open_esm_datastore('/mnt/craas1-ns9989k-geo4992/data/cmip6.json') # Local data stored on NIRD" ] }, { "cell_type": "code", "execution_count": 11, "id": "3e57386d", "metadata": { "ExecuteTime": { "end_time": "2024-05-03T12:54:53.645026Z", "start_time": "2024-05-03T12:54:53.493934Z" } }, "outputs": [ { "data": { "text/html": [ "

cmip6 catalog with 9 dataset(s) from 190 asset(s):

\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
unique
variable_id1
table_id1
source_id9
experiment_id1
member_id4
grid_label3
time_range185
activity_id2
institution_id9
version9
path190
dcpp_init_year0
derived_variable_id0
\n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "col = col.search( \n", " experiment_id=['histSST', 'histSST-piaer'],\n", " variable_id = ['od550abs', 'od550aer']\n", ")\n", "col" ] }, { "cell_type": "markdown", "id": "d5678e30", "metadata": {}, "source": [ "Then when we are happy with the selection the catalog can be exported as follows:" ] }, { "cell_type": "code", "execution_count": 12, "id": "8131074a", "metadata": { "ExecuteTime": { "end_time": "2024-05-03T12:54:53.652854Z", "start_time": "2024-05-03T12:54:53.646372Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Successfully wrote ESM catalog json file to: file:///home/fc-3auid-3a9fdc0c87-2d7836-2d4bdc-2db802-2d9a250c322e3b//histSST-AerChemMIP.json\n" ] } ], "source": [ "col.serialize(name='histSST-AerChemMIP',catalog_type='file',directory='~/')" ] }, { "cell_type": "code", "execution_count": 13, "id": "90b4c58e", "metadata": { "ExecuteTime": { "end_time": "2024-05-03T12:54:53.675734Z", "start_time": "2024-05-03T12:54:53.654084Z" } }, "outputs": [ { "data": { "text/html": [ "

histSST-AerChemMIP catalog with 9 dataset(s) from 190 asset(s):

\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
unique
variable_id1
table_id1
source_id9
experiment_id1
member_id4
grid_label3
time_range185
activity_id2
institution_id9
version9
path190
dcpp_init_year0
derived_variable_id0
\n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "col = intake.open_esm_datastore('~/histSST-AerChemMIP.json')\n", "col" ] } ], "metadata": { "celltoolbar": "Edit Metadata", "kernelspec": { "display_name": "Python [conda env:pangeo-notebook]", "language": "python", "name": "conda-env-pangeo-notebook-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.8" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 5 }